↓ Skip to main content

Does Humeral Component Lateralization in Reverse Shoulder Arthroplasty Affect Rotator Cuff Torque? Evaluation in a Cadaver Model

Overview of attention for article published in Clinical Orthopaedics & Related Research, June 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
68 Mendeley
Title
Does Humeral Component Lateralization in Reverse Shoulder Arthroplasty Affect Rotator Cuff Torque? Evaluation in a Cadaver Model
Published in
Clinical Orthopaedics & Related Research, June 2017
DOI 10.1007/s11999-017-5413-7
Pubmed ID
Authors

Kevin Chan, G Daniel G Langohr, Matthew Mahaffy, James A Johnson, George S Athwal

Abstract

Humeral component lateralization in reverse total shoulder arthroplasty (RTSA) may improve the biomechanical advantage of the rotator cuff, which could improve the torque generated by the rotator cuff and increase internal and external rotation of the shoulder. The purpose of this in vitro biomechanical study was to evaluate the effect of humeral component lateralization (or lateral offset) on the torque of the anterior and posterior rotator cuff. Eight fresh-frozen cadaveric shoulders from eight separate donors (74 ± 8 years; six males, two females) were tested using an in vitro simulator. All shoulders were prescreened for soft tissue deficit and/or deformity before testing. A custom RTSA prosthesis was implanted that allowed five levels of humeral component lateralization (15, 20, 25, 30, 35 mm), which avoided restrictions imposed by commercially available designs. The torques exerted by the anterior and posterior rotator cuff were measured three times and then averaged for varying humeral lateralization, abduction angle (0°, 45°, 90°), and internal and external rotation (-60°, -30°, 0°, 30°, 60°). A three-way repeated measures ANOVA (abduction angle, humeral lateralization, internal rotation and external rotation angles) with a significance level of α = 0.05 was used for statistical analysis. Humeral lateralization only affected posterior rotator cuff torque at 0° abduction, where increasing humeral lateralization from 15 to 35 mm at 60° internal rotation decreased external rotation torque by 1.6 ± 0.4 Nm (95% CI, -0.07 -1.56 Nm; p = 0.06) from 4.0 ± 0.3 Nm to 2.4 ± 0.6 Nm, respectively, but at 60° external rotation increased external rotation torque by 2.2 ± 0.5 Nm (95% CI, -4.2 to -0.2 Nm; p = 0.029) from 6.2 ± 0.5 Nm to 8.3 ± 0.5 Nm, respectively. Anterior cuff torque was affected by humeral lateralization in more arm positions than the posterior cuff, where increasing humeral lateralization from 15 to 35 mm when at 60° internal rotation increased internal rotation torque at 0°, 45°, and 90° abduction by 3.2 ± 0.5 Nm (95% CI, 1.1-5.2 Nm; p = 0.004) from 6.6 ± 0.6 Nm to 9.7 ± 0.6 Nm, 4.0 ± 0.3 Nm (95% CI, 2.8-5.0 Nm; p < 0.001) from 1.7 ± 1.0 Nm to 5.6 ± 0.9 Nm, and 2.2 ± 0.2 Nm (95% CI, 1.4-2.9 Nm; p < 0.001) from 0.6 ± 0.6 Nm to 2.8 ± 0.6 Nm, respectively. In neutral internal and external rotation, increasing humeral lateral offset from 15 to 35 mm increased the internal rotation torque at 45˚ and 90˚ abduction by 1.5 ± 0.3 Nm (95% CI, 0.2-2.7 Nm; p = 0.02) and 1.3 ± 0.2 Nm (95% CI, 0.4-2.3 Nm; p < 0.001), respectively. Humeral component lateralization improves rotator cuff torque. The results of this preliminary in vitro cadaveric study suggest that the lateral offset of the RTSA humeral component plays an important role in the torque generated by the anterior and posterior rotator cuff. However, further studies are needed before clinical application of these results. Increasing humeral offset may have adverse effects, such as the increased risk of implant modularity, increasing tension of the cuff and soft tissues, increased costs often associated with design modifications, and other possible as yet unforeseen negative consequences.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 68 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 18%
Student > Ph. D. Student 9 13%
Other 7 10%
Professor 4 6%
Student > Doctoral Student 4 6%
Other 14 21%
Unknown 18 26%
Readers by discipline Count As %
Medicine and Dentistry 22 32%
Engineering 14 21%
Nursing and Health Professions 4 6%
Agricultural and Biological Sciences 2 3%
Arts and Humanities 2 3%
Other 1 1%
Unknown 23 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 October 2019.
All research outputs
#6,924,668
of 25,382,440 outputs
Outputs from Clinical Orthopaedics & Related Research
#1,866
of 7,300 outputs
Outputs of similar age
#102,953
of 331,803 outputs
Outputs of similar age from Clinical Orthopaedics & Related Research
#23
of 63 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 7,300 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.8. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,803 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.