↓ Skip to main content

Altered reproductive behaviours in male mosquitofish living downstream from a sewage treatment plant

Overview of attention for article published in Aquatic Toxicology, February 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Altered reproductive behaviours in male mosquitofish living downstream from a sewage treatment plant
Published in
Aquatic Toxicology, February 2014
DOI 10.1016/j.aquatox.2014.02.001
Pubmed ID
Authors

Minna Saaristo, Jackie Myers, Rowan Jacques-Hamilton, Mayumi Allinson, Atsushi Yamamoto, Graeme Allinson, Vincent Pettigrove, Bob B.M. Wong

Abstract

Freshwater environments are common repositories for the discharge of large volumes of domestic and industrial waste, particularly through wastewater effluent. One common group of chemical pollutants present in wastewater are endocrine disrupting chemicals (EDCs), which can induce morphological and behavioural changes in aquatic organisms. The aim of this study was to compare the reproductive behaviour and morphology of a freshwater fish, the mosquitofish (Gambusia holbrooki), collected from two sites (wastewater treatment plant (WWTP) and a putative pristine site). The mosquitofish is a sexually dimorphic livebearer with a coercive mating system. Males inseminate females using their modified anal fin as an intromittent organ. Despite this, females are able to exert some control over the success of male mating attempts by selectively associating with, or avoiding, certain males over others. Using standard laboratory assays of reproductive behaviour, we found that mosquitofish males living in close proximity to WWTP showed increased mating activity compared to those inhabiting a pristine site. More specifically, during behavioural trials in which males were allowed to interact with females separated by a transparent divider, we found that WWTP-males spent more time associating with females. Concordant with this, when males and females were subsequently allowed to interact freely, WWTP-males also spent more time chasing and orienting towards the females. As a result, females from both sites showed more interest towards the WWTP-site males. Male anal fin morphology, however, did not differ between sites. Our study illustrates that lifetime exposure to WWTP-effluents can greatly affect male behaviour. The results underscore the importance of behaviour as a potential tool for investigating unknown contaminants in the environment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 2%
Unknown 63 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 19%
Researcher 9 14%
Student > Ph. D. Student 8 13%
Student > Bachelor 7 11%
Student > Doctoral Student 3 5%
Other 10 16%
Unknown 15 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 34%
Environmental Science 11 17%
Biochemistry, Genetics and Molecular Biology 4 6%
Medicine and Dentistry 2 3%
Psychology 2 3%
Other 9 14%
Unknown 14 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 February 2014.
All research outputs
#16,046,765
of 25,371,288 outputs
Outputs from Aquatic Toxicology
#1,364
of 2,666 outputs
Outputs of similar age
#190,110
of 329,374 outputs
Outputs of similar age from Aquatic Toxicology
#15
of 27 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,666 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,374 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.