↓ Skip to main content

A Promising Tool in Retina Regeneration: Current Perspectives and Challenges When Using Mesenchymal Progenitor Stem Cells in Veterinary and Human Ophthalmological Applications

Overview of attention for article published in Stem Cell Reviews and Reports, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
109 Mendeley
Title
A Promising Tool in Retina Regeneration: Current Perspectives and Challenges When Using Mesenchymal Progenitor Stem Cells in Veterinary and Human Ophthalmological Applications
Published in
Stem Cell Reviews and Reports, June 2017
DOI 10.1007/s12015-017-9750-4
Pubmed ID
Authors

Anna Cislo-Pakuluk, Krzysztof Marycz

Abstract

Visual impairment is a common ailment of the current world population, with more exposure to CCD screens and fluorescent lighting, approximately 285 billion people suffer from this deficiency and 13% of those are considered clinically blind. More common causes for visual impairment include age-related macular degeneration (AMD), glaucoma and diabetic retinopathy (Zhu et al. Molecular Medicine Reports, 2015; Kolb et al. 2007; Machalińska et al. Current Eye Research, 34(9),748-760, 2009) among a few. As cases of retinal and optic nerve diseases rise, it is vital to find a treatment, which has led to investigation of the therapeutic potential of various stem cells types (Bull et al. Investigative Opthalmology & Visual Science, 50(9), 4244, 2009; Bull et al. Investigative Opthalmology & Visual Science, 49(8), 3449, 2008; Yu et al. Biochemical and Biophysical Research Communications, 344(4), 1071-1079, 2006; Na et al. Graefe's Archive for Clinical and Experimental Ophthalmology, 247(4), 503-514, 2008). In previous studies, some of the stem cell variants used include human Muller SCs and bone marrow derived SCs. Some of the regenerative potential characteristics of mesenchymal progenitor stem cells (MSCs) include their multilineage differentiation potential, their immunomodulatory effects, their high proliferative activity, they can be easily cultured in vitro, and finally their potential to synthesize and secrete membrane derived vesicles rich in growth factors, mRNA and miRNA which possibly aid in regulation of tissue damage regeneration. These facts alone, explain why MSCs are so widely used in clinical trials, 350 up to date (Switonski, Reproductive Biology, 14(1), 44-50, 2014). Animal studies have demonstrated that sub-retinal transplantation of MSCs delays retinal degeneration and preserves retinal function through trophic response (Inoue et al. Experimental Eye Research, 85(2), 234-241, 2007). Umbilical cord derived MSCs (UC/MSCs) have also been shown to contain neuroprotective features of ganglion cells in rat studies (Zwart et al. Experimental Neurology, 216(2), 439-448, 2009). This review aims to present current MSC therapies in practice, as well as their retinal regeneration potential in animal models, and their innovative prospects for treatment of human retinal diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 109 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 109 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 15%
Student > Master 15 14%
Student > Bachelor 10 9%
Student > Doctoral Student 9 8%
Student > Ph. D. Student 9 8%
Other 20 18%
Unknown 30 28%
Readers by discipline Count As %
Medicine and Dentistry 25 23%
Biochemistry, Genetics and Molecular Biology 19 17%
Agricultural and Biological Sciences 8 7%
Neuroscience 7 6%
Pharmacology, Toxicology and Pharmaceutical Science 4 4%
Other 14 13%
Unknown 32 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 August 2017.
All research outputs
#15,989,045
of 25,382,440 outputs
Outputs from Stem Cell Reviews and Reports
#604
of 1,036 outputs
Outputs of similar age
#186,562
of 329,802 outputs
Outputs of similar age from Stem Cell Reviews and Reports
#11
of 19 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 36th percentile – i.e., 36% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,036 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,802 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.