↓ Skip to main content

Characterization of electrocorticogram high-gamma signal in response to varying upper extremity movement velocity

Overview of attention for article published in Brain Structure and Function, May 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
28 Mendeley
Title
Characterization of electrocorticogram high-gamma signal in response to varying upper extremity movement velocity
Published in
Brain Structure and Function, May 2017
DOI 10.1007/s00429-017-1429-8
Pubmed ID
Authors

Po T. Wang, Colin M. McCrimmon, Christine E. King, Susan J. Shaw, David E. Millett, Hui Gong, Luis A. Chui, Charles Y. Liu, Zoran Nenadic, An H. Do

Abstract

The mechanism by which the human primary motor cortex (M1) encodes upper extremity movement kinematics is not fully understood. For example, human electrocorticogram (ECoG) signals have been shown to modulate with upper extremity movements; however, this relationship has not been explicitly characterized. To address this issue, we recorded high-density ECoG signals from patients undergoing epilepsy surgery evaluation as they performed elementary upper extremity movements while systematically varying movement speed and duration. Specifically, subjects performed intermittent pincer grasp/release, elbow flexion/extension, and shoulder flexion/extension at slow, moderate, and fast speeds. In all movements, bursts of power in the high-[Formula: see text] band (80-160 Hz) were observed in M1. In addition, the amplitude of these power bursts and the area of M1 with elevated high-[Formula: see text] activity were directly proportional to the movement speed. Likewise, the duration of elevated high-[Formula: see text] activity increased with movement duration. Based on linear regression, M1 high-[Formula: see text] power amplitude and duration covaried with movement speed and duration, respectively, with an average [Formula: see text] of [Formula: see text] and [Formula: see text]. These findings indicate that the encoding of upper extremity movement speed by M1 high-[Formula: see text] activity is primarily linear. Also, the fact that this activity remained elevated throughout a movement suggests that M1 does not merely generate transient instructions for a specific movement duration, but instead is responsible for the entirety of the movement. Finally, the spatial distribution of high-[Formula: see text] activity suggests the presence of a recruitment phenomenon in which higher speeds or increased muscle activity involve activation of larger M1 areas.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 4%
Unknown 27 96%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 4 14%
Student > Postgraduate 4 14%
Researcher 3 11%
Student > Ph. D. Student 3 11%
Student > Master 2 7%
Other 4 14%
Unknown 8 29%
Readers by discipline Count As %
Medicine and Dentistry 5 18%
Engineering 4 14%
Nursing and Health Professions 2 7%
Neuroscience 2 7%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 4 14%
Unknown 10 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 June 2017.
All research outputs
#21,697,638
of 24,217,893 outputs
Outputs from Brain Structure and Function
#1,524
of 1,725 outputs
Outputs of similar age
#277,550
of 317,109 outputs
Outputs of similar age from Brain Structure and Function
#44
of 54 outputs
Altmetric has tracked 24,217,893 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,725 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,109 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.