↓ Skip to main content

An historical perspective of the discovery of titin filaments

Overview of attention for article published in Biophysical Reviews, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
3 X users
googleplus
1 Google+ user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
42 Mendeley
Title
An historical perspective of the discovery of titin filaments
Published in
Biophysical Reviews, June 2017
DOI 10.1007/s12551-017-0269-3
Pubmed ID
Authors

Cris dos Remedios, Darcy Gilmour

Abstract

This review takes readers back to 1949, when two Australian scientists, Draper and Hodge, reported the first high-resolution electron microscopy images of striated muscle. In 1953, Jean Hanson and Hugh Huxley published phase-contrast microscopy and electron microscopy images that established the filamentous nature of the sarcomere, namely the myosin-containing thick filaments and actin-containing thin filaments. They discussed a putative third filament system, possibly a thinner actin-containing S filament, that appeared to connect one Z disc to the next. The next year, two back-to-back papers appeared in Nature, the first by Andrew Huxley and Rolf. Niedergerke, the second by Hugh Huxley with Jean Hanson. Independently, they proposed the sliding of actin filaments and myosin filaments. These two filaments quickly became firmly established in the literature and, even today, they remain the basis for the sliding filament hypothesis. The putative third filament concept was dropped, mainly through the lack of evidence but also because it was difficult to accommodate in the hypothesis where two sets of filaments maintained their lengths constant while sliding produced sarcomere shortening. The view that actin and myosin comprise more than 80% of the myofibril proteins also made it difficult to accommodate a major new protein. In the following years, using selective extraction of myosin and actin, dos Remedios (PhD thesis, University of Sydney, 1965) revealed a residual filament system in the sarcomere, and, once again, a third filament system re-entered the literature. Filaments were reported crossing the gap between the ends of thick and thin filaments in highly stretched muscle fibres. These and other early studies necessarily focussed on light and electron microscopy, and set the scene for investigations into the chemical nature and biophysical functions of the third filament system for striated muscles. Further progress had to wait for the improvement and/or development of a number of techniques. For example, in 1970, Laemmli (Nature 227:680-685, 1970) published an often cited method for improving SDS polyacrylamide gel electrophoresis. The Lowry et al. (J Biol Chem 193:265-275, 1951) protein assay method developed in 1950 was both unstable and insensitive in comparison, but we had to wait until 1976 for the development of the Bradford method (1976). Atomic force microscopy was not known before 1986, but it eventually enabled the direct measurement of single molecules of titin. This extraordinarily large (>10(6) Da) elastic protein became known as connectin (Maruyama in J Biochem 80:405-407, 1976) and was subsequently named titin (Wang et al. in Proc Natl Acad Sci U S A 76:3698-3702, 1979). Prior to the discovery of titin/connectin, biophysicists found it difficult to understand how a single polypeptide chain could could stretch from the Z disc to the M line, a distance of more than 1 μm. It was quite literally the 'elephant in the room'. In this review, we follow the trail of microscopy-based reports that led to the emergence of what is now known and accepted as titin, an elastic third filamentous protein that is the focus of this Special Issue.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 17%
Student > Ph. D. Student 7 17%
Student > Postgraduate 3 7%
Student > Master 3 7%
Student > Doctoral Student 2 5%
Other 7 17%
Unknown 13 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 29%
Agricultural and Biological Sciences 8 19%
Medicine and Dentistry 3 7%
Nursing and Health Professions 1 2%
Arts and Humanities 1 2%
Other 4 10%
Unknown 13 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 July 2017.
All research outputs
#13,558,573
of 22,982,639 outputs
Outputs from Biophysical Reviews
#223
of 799 outputs
Outputs of similar age
#161,006
of 315,729 outputs
Outputs of similar age from Biophysical Reviews
#6
of 17 outputs
Altmetric has tracked 22,982,639 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 799 research outputs from this source. They receive a mean Attention Score of 2.7. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,729 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.