↓ Skip to main content

Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols

Overview of attention for article published in Planta, June 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
78 Dimensions

Readers on

mendeley
91 Mendeley
Title
Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols
Published in
Planta, June 2017
DOI 10.1007/s00425-017-2718-4
Pubmed ID
Authors

Anne Oertel, Andrea Matros, Anja Hartmann, Panagiotis Arapitsas, Klaus J. Dehmer, Stefan Martens, Hans-Peter Mock

Abstract

Metabolite profiling of tuber flesh and peel for selected colored potato varieties revealed cultivar and tissue specific profiles of anthocyanins and other polyphenols with variations in composition and concentration. Starchy tubers of Solanum tuberosum are a staple crop and food in many countries. Among cultivated potato varieties a huge biodiversity exists, including an increasing number of red and purple colored cultivars. This coloration relates to the accumulation of anthocyanins and is supposed to offer nutritional benefits possibly associated with the antioxidative capacity of anthocyanins. However, the anthocyanin composition and its relation to the overall polyphenol constitution in colored potato tubers have not been investigated closely. This study focuses on the phytochemical characterization of the phenolic composition of a variety of colored potato tubers, both for peel and flesh tissues. First, liquid chromatography (LC) separation coupled to UV and mass spectrometry (MS) detection of polyphenolic compounds of potato tubers from 57 cultivars was used to assign groups of potato cultivars differing in their anthocyanin and polyphenol profiles. Tissues from 19 selected cultivars were then analyzed by LC separation coupled to multiple reaction monitoring (MRM) to detect quantitative differences in anthocyanin and polyphenol composition. The measured intensities of 21 anthocyanins present in the analyzed potato cultivars and tissues could be correlated with the specific tuber coloration. Besides secondary metabolites well-known for potato tubers, the metabolic profiling led to the detection of two anthocyanins not described for potato tuber previously, which we tentatively annotated as pelargonidin feruloyl-xylosyl-glucosyl-galactoside and cyanidin 3-p-coumaroylrutinoside-5-glucoside. We detected significant correlations between some of the measured metabolites, as for example the negative correlation between the main anthocyanins of red and blue potato cultivars. Mainly hydroxylation and methylation patterns of the B-ring of dihydroflavonols, leading to the formation of specific anthocyanidin backbones, can be assigned to a distinct coloring of the potato cultivars and tuber tissues. However, basically the same glycosylation and acylation reactions occur regardless of the main anthocyanidin precursor present in the respective red and blue/purple tissue. Thus, the different anthocyanin profiles in red and blue potato cultivars likely relate to superior regulation of the expression and activities of hydroxylases and methyltransferases rather than to differences for downstream glycosyl- and acyltransferases. In this regard, the characterized potato cultivars represent a valuable resource for the molecular analysis of the genetic background and the regulation of anthocyanin side chain modification.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 91 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 91 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 15%
Student > Ph. D. Student 9 10%
Student > Master 8 9%
Student > Doctoral Student 6 7%
Student > Bachelor 5 5%
Other 15 16%
Unknown 34 37%
Readers by discipline Count As %
Agricultural and Biological Sciences 25 27%
Biochemistry, Genetics and Molecular Biology 10 11%
Chemistry 5 5%
Social Sciences 2 2%
Computer Science 1 1%
Other 8 9%
Unknown 40 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 December 2017.
All research outputs
#18,558,284
of 22,985,065 outputs
Outputs from Planta
#2,166
of 2,735 outputs
Outputs of similar age
#241,368
of 315,315 outputs
Outputs of similar age from Planta
#24
of 35 outputs
Altmetric has tracked 22,985,065 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,735 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,315 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.