↓ Skip to main content

Molecular docking studies on thirteen fluoroquinolines with human topoisomerase II a and b

Overview of attention for article published in In Silico Pharmacology, June 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
54 Mendeley
Title
Molecular docking studies on thirteen fluoroquinolines with human topoisomerase II a and b
Published in
In Silico Pharmacology, June 2017
DOI 10.1007/s40203-017-0024-2
Pubmed ID
Authors

Ashwini Khanderao Jadhav, Sankunny Mohan Karuppayil

Abstract

DNA relaxation is an important step in DNA replication. DNA topoisomerases play a major role in DNA relaxation. Hence these enzymes are important targets for cancer drugs. DNA topoisomerase inhibitors bind to the transient enzyme-DNA complex and inhibit DNA replication. Various inhibitors of topoisomerase I and II are prescribed as drugs. Topoisomerase II is considered as an important target for the development of anticancer drugs. In this study we have demonstrated molecular docking of thirteen fluoroquinolines with human DNA topoisomerase II alpha (a) and beta (b). Fluoroquinolines are broad spectrum antibacterial antibiotics and it is highly effective against various bacterial infections. Some of the fluoroquinolines like moxifloxacin exert antifungal as well as anti-cancer activity. It forms complexes with topoisomerase II a and are responsible for stoppage DNA replication. Molecular docking studies showed that fluoroquinolines has shown formation of hydrogen bond and good binding affinity with human Topo2a and Topo2b. Hence FQs may inhibit the activity of enzyme topoisomerase by binding at its active site. Ofloxacin, sparafloxacin, ciprofloxacin and moxifloxacin are predicted to be the most potent inhibitors among the thirteen FQs docked. GLN773, ASN770, LYS723 and TRP931 amino acid residues of Topo2a are involved in binding with FQs while ASP479, SER480, ARG820, ARG503, LYS456 and GLN778 amino acid residues of Topo2b are involved in binding with FQs. Our in silico study suggests that fluoroquinolines could be repositioned as DNA topoisomerase II inhibitors hence can be used as anticancer drugs. In vitro and in vivo experiments need to be done to confirm their efficacy.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 19%
Student > Bachelor 6 11%
Researcher 5 9%
Student > Ph. D. Student 5 9%
Lecturer 4 7%
Other 7 13%
Unknown 17 31%
Readers by discipline Count As %
Chemistry 9 17%
Biochemistry, Genetics and Molecular Biology 8 15%
Pharmacology, Toxicology and Pharmaceutical Science 7 13%
Agricultural and Biological Sciences 4 7%
Medicine and Dentistry 3 6%
Other 3 6%
Unknown 20 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 July 2017.
All research outputs
#20,431,953
of 22,985,065 outputs
Outputs from In Silico Pharmacology
#57
of 76 outputs
Outputs of similar age
#274,256
of 314,551 outputs
Outputs of similar age from In Silico Pharmacology
#3
of 3 outputs
Altmetric has tracked 22,985,065 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 76 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,551 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one.