↓ Skip to main content

Identification of controlling factors for the initiation of corrosion of fresh concrete sewers

Overview of attention for article published in Water Research, May 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
75 Dimensions

Readers on

mendeley
89 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of controlling factors for the initiation of corrosion of fresh concrete sewers
Published in
Water Research, May 2015
DOI 10.1016/j.watres.2015.04.015
Pubmed ID
Authors

Guangming Jiang, Xiaoyan Sun, Jurg Keller, Philip L. Bond

Abstract

The development of concrete corrosion in new sewer pipes undergoes an initiation process before reaching an active corrosion stage. This initiation period is assumed to last several months to years but the key factors affecting the process, and its duration, are not well understood. This study is therefore focused on this initial stage of the corrosion process and the effect of key environmental factors. Such knowledge is important for the effective management of corrosion in new sewers, as every year of life extension of such systems has a very high financial benefit. This long-term (4.5 year) study has been conducted in purpose-built corrosion chambers that closely simulated the sewer environment, but with control of three key environmental factors being hydrogen sulfide (H2S) gas phase concentration, relative humidity and air temperature. Fresh concrete coupons, cut from an industry-standard sewer pipe, were exposed to the corrosive conditions in the chambers, both in the gas phase and partially submerged in wastewater. A total of 36 exposure conditions were investigated to determine the controlling factors by regular retrieval of concrete coupons for detailed analysis of surface pH, sulfur compounds (elemental sulfur and sulfate) and concrete mass loss. Corrosion initiation times were thus determined for different exposure conditions. It was found that the corrosion initiation time of both gas-phase and partially-submerged coupons was positively correlated with the gas phase H2S concentration, but only at levels of 10 ppm or below, indicating that sulfide oxidation rate rather than the H2S concentration was the limiting factor during the initiation stage. Relative humidity also played a role for the corrosion initiation of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as these coupons were in direct contact with the sewage and hence did have sufficient moisture to enable the microbial processes to proceed. The corrosion initiation time was also shortened by higher gas temperature due to its positive impact on reaction kinetics. These findings provide real opportunities for pro-active sewer asset management with the aim to delay the on-set of the corrosion processes, and hence extend the service life of sewers, through improved prediction and optimization capacity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 89 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Australia 1 1%
Austria 1 1%
Unknown 87 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 23 26%
Student > Ph. D. Student 18 20%
Researcher 12 13%
Lecturer 4 4%
Student > Bachelor 4 4%
Other 10 11%
Unknown 18 20%
Readers by discipline Count As %
Engineering 46 52%
Environmental Science 6 7%
Agricultural and Biological Sciences 2 2%
Business, Management and Accounting 2 2%
Materials Science 2 2%
Other 9 10%
Unknown 22 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2015.
All research outputs
#20,656,820
of 25,374,647 outputs
Outputs from Water Research
#8,101
of 11,875 outputs
Outputs of similar age
#206,518
of 279,102 outputs
Outputs of similar age from Water Research
#45
of 73 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,875 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,102 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.