↓ Skip to main content

The neural basis of temporal individuation and its capacity limits in the human brain

Overview of attention for article published in Journal of Neurophysiology, November 2013
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (70th percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
3 X users
googleplus
1 Google+ user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The neural basis of temporal individuation and its capacity limits in the human brain
Published in
Journal of Neurophysiology, November 2013
DOI 10.1152/jn.00534.2013
Pubmed ID
Authors

Claire K. Naughtin, Benjamin J. Tamber-Rosenau, Paul E. Dux

Abstract

Individuation refers to individuals' use of spatial and temporal properties to register an object as a distinct perceptual event relative to other stimuli. Although behavioral studies have examined both spatial and temporal individuation, neuroimaging investigations of individuation have been restricted to the spatial domain and at relatively late stages of information processing. In this study we used univariate and multivoxel pattern analyses of functional magnetic resonance imaging data to identify brain regions involved in individuating temporally distinct visual items and the neural consequences that arise when this process reaches its capacity limit (repetition blindness, RB). First, we found that regional patterns of blood oxygen level-dependent activity in a large group of brain regions involved in "lower-level" perceptual and "higher-level" attentional/executive processing discriminated between instances where repeated and nonrepeated stimuli were successfully individuated, conditions that placed differential demands on temporal individuation. These results could not be attributed to repetition suppression, stimulus or response factors, task difficulty, regional activation differences, other capacity-limited processes, or artifacts in the data or analyses. Consistent with the global workplace model of consciousness, this finding suggests that temporal individuation is supported by a distributed set of brain regions, rather than a single neural correlate. Second, conditions that reflect the capacity limit of individuation (instances of RB) modulated the amplitude, rather than spatial pattern, of activity in the left hemisphere premotor cortex. This finding could not be attributed to response conflict/ambiguity and likely reflects a candidate brain region underlying the capacity-limited process that gives rise to RB.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 5%
Brazil 1 5%
Unknown 17 89%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 32%
Researcher 5 26%
Student > Bachelor 3 16%
Lecturer > Senior Lecturer 2 11%
Other 1 5%
Other 2 11%
Readers by discipline Count As %
Psychology 7 37%
Neuroscience 5 26%
Philosophy 1 5%
Agricultural and Biological Sciences 1 5%
Nursing and Health Professions 1 5%
Other 2 11%
Unknown 2 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 February 2014.
All research outputs
#7,356,343
of 25,374,647 outputs
Outputs from Journal of Neurophysiology
#1,998
of 8,423 outputs
Outputs of similar age
#64,609
of 228,672 outputs
Outputs of similar age from Journal of Neurophysiology
#15
of 48 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 8,423 research outputs from this source. They receive a mean Attention Score of 4.8. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 228,672 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.