↓ Skip to main content

An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics

Overview of attention for article published in Lab on a Chip - Miniaturisation for Chemistry & Biology, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics
Published in
Lab on a Chip - Miniaturisation for Chemistry & Biology, January 2017
DOI 10.1039/c7lc00524e
Pubmed ID
Authors

C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell, L. M. Lechuga

Abstract

A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 28%
Researcher 14 22%
Student > Master 6 9%
Student > Doctoral Student 4 6%
Professor > Associate Professor 3 5%
Other 8 13%
Unknown 11 17%
Readers by discipline Count As %
Engineering 28 44%
Physics and Astronomy 5 8%
Chemistry 5 8%
Biochemistry, Genetics and Molecular Biology 4 6%
Chemical Engineering 2 3%
Other 4 6%
Unknown 16 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 August 2017.
All research outputs
#16,853,541
of 25,756,911 outputs
Outputs from Lab on a Chip - Miniaturisation for Chemistry & Biology
#4,485
of 5,997 outputs
Outputs of similar age
#254,838
of 424,022 outputs
Outputs of similar age from Lab on a Chip - Miniaturisation for Chemistry & Biology
#205
of 274 outputs
Altmetric has tracked 25,756,911 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,997 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.4. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 424,022 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 274 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.