↓ Skip to main content

Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections

Overview of attention for article published in Analytical & Bioanalytical Chemistry, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
70 Mendeley
Title
Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections
Published in
Analytical & Bioanalytical Chemistry, June 2017
DOI 10.1007/s00216-017-0414-7
Pubmed ID
Authors

Tobiloba Sojinrin, João Conde, Kangze Liu, James Curtin, Hugh J. Byrne, Daxiang Cui, Furong Tian

Abstract

Fungi, which are common in the environment, can cause a multitude of diseases. Warm, humid conditions allow fungi to grow and infect humans via the respiratory, digestive and reproductive tracts, genital area and other bodily interfaces. Fungi can be detected directly by microscopy, using the potassium hydroxide test, which is the gold standard and most popular method for fungal screening. However, this test requires trained personnel operating specialist equipment, including a fluorescent microscope and culture facilities. As most acutely infected patients seek medical attention within the first few days of symptoms, the optimal diagnostic test would be rapid and self-diagnostic simplifying and improving the therapeutic outcome. In suspensions of gold nanoparticles, Aspergillus niger can cause a colour change from red to blue within 2 min, as a result of changes in nanoparticle shape. A similar colour change was observed in the supernatant of samples of human toenails dispersed in water. Scanning electron microscopy, UV/Vis and Raman spectroscopy were employed to monitor the changes in morphology and surface plasmon resonance of the nanoparticles. The correlation of colour change with the fungal infection was analysed using the absorbance ratio at 520 nm/620 nm. We found a decrease in the ratio when the fungi concentration increased from 1 to 16 CFU/mL, with a detection limit of 10 CFU/mL. The test had an 80% sensitivity and a 95% specificity value for the diagnosis of athlete's foot in human patients. This plasmonic gold nanoparticle-based system for detection of fungal infections measures the change in shape of gold nanoparticles and generates coloured solutions with distinct tonality. Our application has the potential to contribute to self-diagnosis and hygiene control in laboratories/hospitals with fewer resources, just using the naked eye. Graphical abstract Colorimetric method for fungi detection with gold nano particles.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 70 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 21%
Researcher 8 11%
Student > Master 6 9%
Student > Bachelor 4 6%
Professor 3 4%
Other 5 7%
Unknown 29 41%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 13%
Engineering 5 7%
Chemistry 4 6%
Medicine and Dentistry 3 4%
Physics and Astronomy 3 4%
Other 17 24%
Unknown 29 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 July 2017.
All research outputs
#20,233,045
of 25,728,855 outputs
Outputs from Analytical & Bioanalytical Chemistry
#6,171
of 9,730 outputs
Outputs of similar age
#241,627
of 332,634 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#54
of 140 outputs
Altmetric has tracked 25,728,855 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,730 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,634 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 140 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.