↓ Skip to main content

Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness

Overview of attention for article published in Nature Communications, July 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

news
16 news outlets
blogs
2 blogs
twitter
94 X users
facebook
9 Facebook pages
googleplus
1 Google+ user

Citations

dimensions_citation
154 Dimensions

Readers on

mendeley
321 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness
Published in
Nature Communications, July 2017
DOI 10.1038/ncomms16015
Pubmed ID
Authors

Sara M. Willems, Daniel J. Wright, Felix R. Day, Katerina Trajanoska, Peter K. Joshi, John A. Morris, Amy M. Matteini, Fleur C. Garton, Niels Grarup, Nikolay Oskolkov, Anbupalam Thalamuthu, Massimo Mangino, Jun Liu, Ayse Demirkan, Monkol Lek, Liwen Xu, Guan Wang, Christopher Oldmeadow, Kyle J. Gaulton, Luca A. Lotta, Eri Miyamoto-Mikami, Manuel A. Rivas, Tom White, Po-Ru Loh, Mette Aadahl, Najaf Amin, John R. Attia, Krista Austin, Beben Benyamin, Søren Brage, Yu-Ching Cheng, Paweł Cięszczyk, Wim Derave, Karl-Fredrik Eriksson, Nir Eynon, Allan Linneberg, Alejandro Lucia, Myosotis Massidda, Braxton D. Mitchell, Motohiko Miyachi, Haruka Murakami, Sandosh Padmanabhan, Ashutosh Pandey, Ioannis Papadimitriou, Deepak K. Rajpal, Craig Sale, Theresia M. Schnurr, Francesco Sessa, Nick Shrine, Martin D. Tobin, Ian Varley, Louise V. Wain, Naomi R. Wray, Cecilia M. Lindgren, Daniel G. MacArthur, Dawn M. Waterworth, Mark I. McCarthy, Oluf Pedersen, Kay-Tee Khaw, Douglas P. Kiel, Yannis Pitsiladis, Noriyuki Fuku, Paul W. Franks, Kathryn N. North, Cornelia M. van Duijn, Karen A. Mather, Torben Hansen, Ola Hansson, Tim Spector, Joanne M. Murabito, J. Brent Richards, Fernando Rivadeneira, Claudia Langenberg, John R. B. Perry, Nick J. Wareham, Robert A. Scott

Abstract

Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P<5 × 10-8) in combined analyses. A number of these loci contain genes implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip strength and the causal role of muscular strength in age-related morbidities and mortality.

X Demographics

X Demographics

The data shown below were collected from the profiles of 94 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 321 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 321 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 58 18%
Student > Ph. D. Student 50 16%
Student > Master 32 10%
Student > Bachelor 24 7%
Student > Doctoral Student 15 5%
Other 64 20%
Unknown 78 24%
Readers by discipline Count As %
Medicine and Dentistry 60 19%
Biochemistry, Genetics and Molecular Biology 45 14%
Agricultural and Biological Sciences 31 10%
Sports and Recreations 24 7%
Nursing and Health Professions 18 6%
Other 42 13%
Unknown 101 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 184. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 January 2023.
All research outputs
#218,333
of 25,402,889 outputs
Outputs from Nature Communications
#3,137
of 56,993 outputs
Outputs of similar age
#4,591
of 324,902 outputs
Outputs of similar age from Nature Communications
#59
of 921 outputs
Altmetric has tracked 25,402,889 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 56,993 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 55.6. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,902 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 921 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.