↓ Skip to main content

Distinct effects on the dendritic arbor occur by microbead versus bath administration of brain-derived neurotrophic factor

Overview of attention for article published in Cellular and Molecular Life Sciences, July 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
18 Mendeley
Title
Distinct effects on the dendritic arbor occur by microbead versus bath administration of brain-derived neurotrophic factor
Published in
Cellular and Molecular Life Sciences, July 2017
DOI 10.1007/s00018-017-2589-7
Pubmed ID
Authors

Kate M. O’Neill, Munjin Kwon, Katherine E. Donohue, Bonnie L. Firestein

Abstract

Proper communication among neurons depends on an appropriately formed dendritic arbor, and thus, aberrant changes to the arbor are implicated in many pathologies, ranging from cognitive disorders to neurodegenerative diseases. Due to the importance of dendritic shape to neuronal network function, the morphology of dendrites is tightly controlled and is influenced by both intrinsic and extrinsic factors. In this work, we examine how brain-derived neurotrophic factor (BDNF), one of the most well-studied extrinsic regulators of dendritic branching, affects the arbor when it is applied locally via microbeads to cultures of hippocampal neurons. We found that local application of BDNF increases both proximal and distal branching in a time-dependent manner and that local BDNF application attenuates pruning of dendrites that occurs with neuronal maturation. Additionally, we examined whether cytosolic PSD-95 interactor (cypin), an intrinsic regulator of dendritic branching, plays a role in these changes and found strong evidence for the involvement of cypin in BDNF-promoted increases in dendrites after 24 but not 48 h of application. This current study extends our previous work in which we found that bath application of BDNF for 72 h, but not shorter times, increases proximal dendrite branching and that this increase occurs through transcriptional regulation of cypin. Moreover, this current work illustrates how dendritic branching is regulated differently by the same growth factor depending on its spatial localization, suggesting a novel pathway for modulation of dendritic branching locally.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 11%
Other 1 6%
Student > Doctoral Student 1 6%
Librarian 1 6%
Student > Ph. D. Student 1 6%
Other 3 17%
Unknown 9 50%
Readers by discipline Count As %
Neuroscience 6 33%
Biochemistry, Genetics and Molecular Biology 1 6%
Chemistry 1 6%
Medicine and Dentistry 1 6%
Unknown 9 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 July 2017.
All research outputs
#16,031,680
of 23,794,258 outputs
Outputs from Cellular and Molecular Life Sciences
#3,071
of 4,151 outputs
Outputs of similar age
#198,564
of 313,730 outputs
Outputs of similar age from Cellular and Molecular Life Sciences
#37
of 63 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,151 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,730 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.