↓ Skip to main content

An att site-based recombination reporter system for genome engineering and synthetic DNA assembly

Overview of attention for article published in BMC Biotechnology, July 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
9 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An att site-based recombination reporter system for genome engineering and synthetic DNA assembly
Published in
BMC Biotechnology, July 2017
DOI 10.1186/s12896-017-0382-1
Pubmed ID
Authors

Michael J. Bland, Magaly Ducos-Galand, Marie-Eve Val, Didier Mazel

Abstract

Direct manipulation of the genome is a widespread technique for genetic studies and synthetic biology applications. The tyrosine and serine site-specific recombination systems of bacteriophages HK022 and ΦC31 are widely used for stable directional exchange and relocation of DNA sequences, making them valuable tools in these contexts. We have developed site-specific recombination tools that allow the direct selection of recombination events by embedding the attB site from each system within the β-lactamase resistance coding sequence (bla). The HK and ΦC31 tools were developed by placing the attB sites from each system into the signal peptide cleavage site coding sequence of bla. All possible open reading frames (ORFs) were inserted and tested for recombination efficiency and bla activity. Efficient recombination was observed for all tested ORFs (3 for HK, 6 for ΦC31) as shown through a cointegrate formation assay. The bla gene with the embedded attB site was functional for eight of the nine constructs tested. The HK/ΦC31 att-bla system offers a simple way to directly select recombination events, thus enhancing the use of site-specific recombination systems for carrying out precise, large-scale DNA manipulation, and adding useful tools to the genetics toolbox. We further show the power and flexibility of bla to be used as a reporter for recombination.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 31%
Student > Ph. D. Student 8 19%
Student > Master 6 14%
Student > Doctoral Student 2 5%
Other 2 5%
Other 5 12%
Unknown 6 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 36%
Agricultural and Biological Sciences 13 31%
Immunology and Microbiology 3 7%
Medicine and Dentistry 2 5%
Psychology 1 2%
Other 1 2%
Unknown 7 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 May 2018.
All research outputs
#7,061,479
of 23,577,761 outputs
Outputs from BMC Biotechnology
#391
of 947 outputs
Outputs of similar age
#108,219
of 313,632 outputs
Outputs of similar age from BMC Biotechnology
#6
of 12 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 947 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.8. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,632 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.