↓ Skip to main content

Effects-based spatial assessment of contaminated estuarine sediments from Bear Creek, Baltimore Harbor, MD, USA

Overview of attention for article published in Environmental Science and Pollution Research, July 2017
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
17 Mendeley
Title
Effects-based spatial assessment of contaminated estuarine sediments from Bear Creek, Baltimore Harbor, MD, USA
Published in
Environmental Science and Pollution Research, July 2017
DOI 10.1007/s11356-017-9667-0
Pubmed ID
Authors

Sharon E. Hartzell, Michael A. Unger, Beth L. McGee, Lance T. Yonkos

Abstract

Estuarine sediments in regions with prolonged histories of industrial activity are often laden to significant depths with complex contaminant mixtures, including trace metals and persistent organic pollutants. Given the complexity of assessing risks from multi-contaminant exposures, the direct measurement of impacts to biological receptors is central to characterizing contaminated sediment sites. Though biological consequences are less commonly assessed at depth, laboratory-based toxicity testing of subsurface sediments can be used to delineate the scope of contamination at impacted sites. The extent and depth of sediment toxicity in Bear Creek, near Baltimore, Maryland, USA, was delineated using 10-day acute toxicity tests with the estuarine amphipod Leptocheirus plumulosus, and chemical analysis of trace metals and persistent organic pollutants. A gradient of toxicity was demonstrated in surface sediments with 21 of 22 tested sites differing significantly from controls. Effects were most pronounced (100% lethality) at sites proximate to a historic industrial complex. Sediments from eight of nine core samples to depths of 80 cm were particularly impacted (i.e., caused significant lethality to L. plumulosus) even in locations overlain with relatively non-toxic surface sediments, supporting a conclusion that toxicity observed at the surface (top 2 cm) does not adequately predict toxicity at depth. In seven of nine sites, toxicity of surface sediments differed from toxicity at levels beneath by 28 to 69%, in five instances underestimating toxicity (28 to 69%), and in two instances overestimating toxicity (44 to 56%). Multiple contaminants exceeded sediment quality guidelines and correlated positively with toxic responses within surface sediments (e.g., chromium, nickel, polycyclic aromatic hydrocarbon (PAH), total petroleum hydrocarbon). Use of an antibody-based PAH biosensor revealed that porewater PAH concentrations also increased with depth at most sites. This study informs future management decisions concerning the extent of impact to Bear Creek sediments, and demonstrates the benefits of a spatial approach, relying primarily on toxicity testing to assess sediment quality in a system with complex contaminant mixtures.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 29%
Researcher 4 24%
Student > Doctoral Student 1 6%
Student > Bachelor 1 6%
Student > Ph. D. Student 1 6%
Other 3 18%
Unknown 2 12%
Readers by discipline Count As %
Environmental Science 7 41%
Medicine and Dentistry 2 12%
Business, Management and Accounting 1 6%
Earth and Planetary Sciences 1 6%
Agricultural and Biological Sciences 1 6%
Other 2 12%
Unknown 3 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 November 2017.
All research outputs
#21,420,714
of 23,911,072 outputs
Outputs from Environmental Science and Pollution Research
#7,000
of 9,883 outputs
Outputs of similar age
#275,961
of 315,022 outputs
Outputs of similar age from Environmental Science and Pollution Research
#148
of 209 outputs
Altmetric has tracked 23,911,072 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,883 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,022 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 209 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.