↓ Skip to main content

Prediction of Protein Secondary Structure

Overview of attention for book
Cover of 'Prediction of Protein Secondary Structure'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Where the Name “GOR” Originates: A Story
  3. Altmetric Badge
    Chapter 2 The GOR Method of Protein Secondary Structure Prediction and Its Application as a Protein Aggregation Prediction Tool
  4. Altmetric Badge
    Chapter 3 Consensus Prediction of Charged Single Alpha-Helices with CSAHserver
  5. Altmetric Badge
    Chapter 4 Predicting Protein Secondary Structure Using Consensus Data Mining (CDM) Based on Empirical Statistics and Evolutionary Information
  6. Altmetric Badge
    Chapter 5 Accurate Prediction of One-Dimensional Protein Structure Features Using SPINE-X
  7. Altmetric Badge
    Chapter 6 SPIDER2: A Package to Predict Secondary Structure, Accessible Surface Area, and Main-Chain Torsional Angles by Deep Neural Networks
  8. Altmetric Badge
    Chapter 7 Backbone Dihedral Angle Prediction
  9. Altmetric Badge
    Chapter 8 One-Dimensional Structural Properties of Proteins in the Coarse-Grained CABS Model
  10. Altmetric Badge
    Chapter 9 Assessing Predicted Contacts for Building Protein Three-Dimensional Models
  11. Altmetric Badge
    Chapter 10 Fast and Accurate Accessible Surface Area Prediction Without a Sequence Profile
  12. Altmetric Badge
    Chapter 11 How to Predict Disorder in a Protein of Interest
  13. Altmetric Badge
    Chapter 12 Intrinsic Disorder and Semi-disorder Prediction by SPINE-D
  14. Altmetric Badge
    Chapter 13 Prediction of Protein Secondary Structure
  15. Altmetric Badge
    Chapter 14 Prediction of Disordered RNA, DNA, and Protein Binding Regions Using DisoRDPbind
  16. Altmetric Badge
    Chapter 15 Prediction of Protein Secondary Structure
  17. Altmetric Badge
    Chapter 16 Computational Approaches for Predicting Binding Partners, Interface Residues, and Binding Affinity of Protein–Protein Complexes
  18. Altmetric Badge
    Chapter 17 In Silico Prediction of Linear B-Cell Epitopes on Proteins
  19. Altmetric Badge
    Chapter 18 Prediction of Protein Phosphorylation Sites by Integrating Secondary Structure Information and Other One-Dimensional Structural Properties
  20. Altmetric Badge
    Chapter 19 Predicting Post-Translational Modifications from Local Sequence Fragments Using Machine Learning Algorithms: Overview and Best Practices
  21. Altmetric Badge
    Chapter 20 CX, DPX, and PCW: Web Servers for the Visualization of Interior and Protruding Regions of Protein Structures in 3D and 1D
  22. Altmetric Badge
    Chapter 21 Erratum to: One-Dimensional Structural Properties of Proteins in the Coarse-Grained CABS Model
Attention for Chapter 6: SPIDER2: A Package to Predict Secondary Structure, Accessible Surface Area, and Main-Chain Torsional Angles by Deep Neural Networks
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
85 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
SPIDER2: A Package to Predict Secondary Structure, Accessible Surface Area, and Main-Chain Torsional Angles by Deep Neural Networks
Chapter number 6
Book title
Prediction of Protein Secondary Structure
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6406-2_6
Pubmed ID
Book ISBNs
978-1-4939-6404-8, 978-1-4939-6406-2
Authors

Yuedong Yang, Rhys Heffernan, Kuldip Paliwal, James Lyons, Abdollah Dehzangi, Alok Sharma, Jihua Wang, Abdul Sattar, Yaoqi Zhou

Abstract

Predicting one-dimensional structure properties has played an important role to improve prediction of protein three-dimensional structures and functions. The most commonly predicted properties are secondary structure and accessible surface area (ASA) representing local and nonlocal structural characteristics, respectively. Secondary structure prediction is further complemented by prediction of continuous main-chain torsional angles. Here we describe a newly developed method SPIDER2 that utilizes three iterations of deep learning neural networks to improve the prediction accuracy of several structural properties simultaneously. For an independent test set of 1199 proteins SPIDER2 achieves 82 % accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively, and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively. The method provides state-of-the-art, all-in-one accurate prediction of local structure and solvent accessible surface area. The method is implemented, as a webserver along with a standalone package that are available in our website: http://sparks-lab.org .

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 85 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 85 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 22%
Student > Bachelor 13 15%
Researcher 10 12%
Student > Master 8 9%
Student > Doctoral Student 4 5%
Other 13 15%
Unknown 18 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 28 33%
Computer Science 12 14%
Agricultural and Biological Sciences 7 8%
Chemistry 4 5%
Engineering 3 4%
Other 8 9%
Unknown 23 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 January 2018.
All research outputs
#20,436,330
of 22,990,068 outputs
Outputs from Methods in molecular biology
#9,932
of 13,150 outputs
Outputs of similar age
#356,065
of 421,126 outputs
Outputs of similar age from Methods in molecular biology
#842
of 1,074 outputs
Altmetric has tracked 22,990,068 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,150 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,126 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,074 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.