↓ Skip to main content

Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture

Overview of attention for article published in Analytical & Bioanalytical Chemistry, July 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
70 Mendeley
Title
Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture
Published in
Analytical & Bioanalytical Chemistry, July 2017
DOI 10.1007/s00216-017-0511-7
Pubmed ID
Authors

Mircea Tric, Mario Lederle, Lisa Neuner, Igor Dolgowjasow, Philipp Wiedemann, Stefan Wölfl, Tobias Werner

Abstract

Biosensors for continuous glucose monitoring in bioreactors could provide a valuable tool for optimizing culture conditions in biotechnological applications. We have developed an optical biosensor for long-term continuous glucose monitoring and demonstrated a tight glucose level control during cell culture in disposable bioreactors. The in-line sensor is based on a commercially available oxygen sensor that is coated with cross-linked glucose oxidase (GOD). The dynamic range of the sensor was tuned by a hydrophilic perforated diffusion membrane with an optimized permeability for glucose and oxygen. The biosensor was thoroughly characterized by experimental data and numerical simulations, which enabled insights into the internal concentration profile of the deactivating by-product hydrogen peroxide. The simulations were carried out with a one-dimensional biosensor model and revealed that, in addition to the internal hydrogen peroxide concentration, the turnover rate of the enzyme GOD plays a crucial role for biosensor stability. In the light of this finding, the glucose sensor was optimized to reach a long functional stability (>52 days) under continuous glucose monitoring conditions with a dynamic range of 0-20 mM and a response time of t 90 ≤ 10 min. In addition, we demonstrated that the sensor was sterilizable with beta and UV irradiation and only subjected to minor cross sensitivity to oxygen, when an oxygen reference sensor was applied. Graphical abstract Measuring setup of a glucose biosensor in a shake flask for continuous glucose monitoring in mammalian cell culture.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 70 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 17%
Student > Bachelor 11 16%
Researcher 7 10%
Student > Doctoral Student 4 6%
Student > Master 4 6%
Other 6 9%
Unknown 26 37%
Readers by discipline Count As %
Engineering 11 16%
Biochemistry, Genetics and Molecular Biology 8 11%
Chemistry 4 6%
Medicine and Dentistry 3 4%
Chemical Engineering 3 4%
Other 11 16%
Unknown 30 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Analytical & Bioanalytical Chemistry
#7,543
of 9,619 outputs
Outputs of similar age
#284,798
of 324,967 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#121
of 169 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,967 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 169 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.