↓ Skip to main content

Low genetic diversity and functional constraint of miRNA genes participating pollen–pistil interaction in rice

Overview of attention for article published in Plant Molecular Biology, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
13 Mendeley
Title
Low genetic diversity and functional constraint of miRNA genes participating pollen–pistil interaction in rice
Published in
Plant Molecular Biology, July 2017
DOI 10.1007/s11103-017-0638-0
Pubmed ID
Authors

Kun Wang, Xin Wang, Ming Li, Tao Shi, Pingfang Yang

Abstract

In this study, we sequenced and analyzed the expression and evolution of rice miRNA genes participating pollen-pistil interaction that is crucial to rice yield. Pollen-pistil interaction is an essential reproductive process for all flowering plants. While microRNAs (miRNAs) are important noncoding small RNAs that regulate mRNA levels in eukaryotic cells, there is little knowledge about which miRNAs involved in the early stages of pollen-pistil interaction in rice and how they evolve under this conserved process. In this study, we sequenced the small RNAs in rice from unpollinated pistil (R0), pistil from 5 min and 15 min after pollination, respectively, to identify known and novel miRNAs that are involved in this process. By comparing the corresponding mRNA-seq dataset, we identified a group of miRNAs with strong negative expression pattern with their target genes. Further investigation of all miRNA loci (MIRNAs) across 1083 public rice accessions revealed significantly reduced genetic diversity in MIRNAs with strong negative expression of their targets when comparing to those with little or no impact on targets during pollen-pistil interaction. Annotation of targets suggested that those MIRNAs with strong impact on targets were pronounced in cell wall related processes such as xylan metabolism. Additionally, plant conserved miRNAs, such as those with functions in gibberellic acid, auxin and nitrate signaling, were also with strong negative expression of their targets. Overall, our analyses identified key miRNAs participating pollen-pistil interaction and their evolutionary patterns in rice, which can facilitate the understanding of molecular mechanisms associated with seed setting.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 15%
Professor > Associate Professor 2 15%
Student > Ph. D. Student 2 15%
Student > Doctoral Student 1 8%
Researcher 1 8%
Other 1 8%
Unknown 4 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 46%
Biochemistry, Genetics and Molecular Biology 1 8%
Computer Science 1 8%
Engineering 1 8%
Unknown 4 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 July 2017.
All research outputs
#18,562,247
of 22,990,068 outputs
Outputs from Plant Molecular Biology
#2,493
of 2,846 outputs
Outputs of similar age
#242,146
of 315,953 outputs
Outputs of similar age from Plant Molecular Biology
#14
of 24 outputs
Altmetric has tracked 22,990,068 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,846 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 7th percentile – i.e., 7% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,953 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.