↓ Skip to main content

Neural correlates of rate-dependent finger-tapping in Parkinson’s disease

Overview of attention for article published in Brain Structure and Function, March 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
59 Mendeley
Title
Neural correlates of rate-dependent finger-tapping in Parkinson’s disease
Published in
Brain Structure and Function, March 2014
DOI 10.1007/s00429-014-0749-1
Pubmed ID
Authors

Claudia Diana Wurster, Heiko Graf, Hermann Ackermann, Katharina Groth, Jan Kassubek, Axel Riecker

Abstract

Functional imaging demonstrated hemodynamic activation within specific brain areas that contribute to frequency-dependent movement control. Previous investigations demonstrated a linear relationship between movement and hemodynamic response rates within cortical regions, whereas the basal ganglia displayed an inverse neural activation pattern. We now investigated neural correlates of frequency-related finger movements in patients with Parkinson's disease (PD) to further elucidate the neurofunctional alterations in cortico-subcortical networks in that disorder. We studied ten PD patients (under dopaminergic medication) and ten healthy subjects using a finger-tapping task at three different frequencies (1-4 Hz), implemented in an event-related, sparse sampling fMRI design. FMRI data were analyzed by means of a parametric approach to relate movement rates and regional BOLD signal alteration. Compared to healthy controls, PD patients showed higher tapping response rates only during the lower 1 Hz condition. FMRI analysis revealed a rate-dependent neural activity within the supplemental motor area, primary sensorimotor cortex, thalamus and the cerebellum with higher neural activity at higher frequency conditions in both groups. Within the putamen/pallidum, an inverse neural activity and frequency response correlation could be observed in healthy subjects with higher BOLD signal responses in slow frequencies, whereas this relationship was not evident in PD patients. We could demonstrate similar behavioral responses and neural activation patterns at the level both of frontal and cerebellar areas in PD compared to healthy controls, whereas regions like the putamen/pallidum appear to be still dysfunctional under medication regarding frequency-related neural activation. These findings may, potentially, serve as a neural signature of basal ganglia dysfunctions in frequency-related task requirements.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Portugal 1 2%
Italy 1 2%
Unknown 56 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 24%
Student > Ph. D. Student 10 17%
Student > Bachelor 7 12%
Student > Master 7 12%
Student > Doctoral Student 5 8%
Other 5 8%
Unknown 11 19%
Readers by discipline Count As %
Neuroscience 13 22%
Psychology 10 17%
Medicine and Dentistry 9 15%
Agricultural and Biological Sciences 4 7%
Computer Science 3 5%
Other 6 10%
Unknown 14 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 March 2014.
All research outputs
#19,702,729
of 24,217,893 outputs
Outputs from Brain Structure and Function
#1,236
of 1,725 outputs
Outputs of similar age
#167,342
of 227,836 outputs
Outputs of similar age from Brain Structure and Function
#19
of 28 outputs
Altmetric has tracked 24,217,893 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,725 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 227,836 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.