↓ Skip to main content

State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation

Overview of attention for article published in Bulletin of Mathematical Biology, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
15 Mendeley
Title
State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation
Published in
Bulletin of Mathematical Biology, April 2016
DOI 10.1007/s11538-016-0149-1
Pubmed ID
Authors

Youfang Cao, Anna Terebus, Jie Liang

Abstract

The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space truncation and error analysis methods developed here can be used to ensure accurate direct solutions to the dCME for a large number of stochastic networks.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 13%
Unknown 13 87%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 27%
Student > Doctoral Student 2 13%
Student > Ph. D. Student 2 13%
Professor 1 7%
Student > Master 1 7%
Other 1 7%
Unknown 4 27%
Readers by discipline Count As %
Physics and Astronomy 4 27%
Mathematics 2 13%
Agricultural and Biological Sciences 2 13%
Biochemistry, Genetics and Molecular Biology 1 7%
Chemistry 1 7%
Other 1 7%
Unknown 4 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2017.
All research outputs
#14,948,254
of 22,992,311 outputs
Outputs from Bulletin of Mathematical Biology
#681
of 1,103 outputs
Outputs of similar age
#170,721
of 299,413 outputs
Outputs of similar age from Bulletin of Mathematical Biology
#2
of 9 outputs
Altmetric has tracked 22,992,311 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,103 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,413 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 7 of them.