↓ Skip to main content

Resolving the chemical structures of off-odorants and potentially harmful substances in toys—example of children’s swords

Overview of attention for article published in Analytical & Bioanalytical Chemistry, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
17 Mendeley
Title
Resolving the chemical structures of off-odorants and potentially harmful substances in toys—example of children’s swords
Published in
Analytical & Bioanalytical Chemistry, July 2017
DOI 10.1007/s00216-017-0469-5
Pubmed ID
Authors

Philipp Denk, Cristina Velasco-Schön, Andrea Buettner

Abstract

Most children's toys on the market are primarily made out of plastic and other complex composite materials. Consumer complaints about offensive odors or irritating effects associated with toy products have increased in recent years. One example is the strongly perceivable negative odor reported for a particular series of toy swords. Characterizing the presence of contaminants, including those that have the potential to be deleterious to health, in such products is a significant analytical challenge due to the high baseline abundance of chemical constituents of the materials used in the products. In the present study, the nature of offensive odorants associated with toy sword products was examined by gas chromatography (GC). After initial sensory evaluations, the volatile compounds from the toy products were recovered using solvent extraction and solvent-assisted flavor evaporation. The extracts were analyzed using GC-olfactometry (GC-O) and two-dimensional GC-O coupled with mass spectrometry (GC-GC-MS/O). A total of 26 odor-active compounds, including aromatic hydrocarbons and phenols, were identified among numerous non-odorous volatile by-products. These substances also included polycyclic aromatic hydrocarbons, which were analyzed by GC-MS. Representative substances were naphthalene and 1,2-dihydronaphthalene that exhibited moldy, mothball-like odor impressions, and phenol derivatives with leather-like, phenolic, horse-stable-like smells. The odorants detected correlated with the assigned attributes from the sensory analyses. This study clearly shows that the detection and identification of such odorous contaminants can provide key indications of potentially harmful yet unknown substances in everyday products such as toys. Graphical abstract ᅟ.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 12%
Student > Doctoral Student 2 12%
Student > Ph. D. Student 2 12%
Other 1 6%
Professor 1 6%
Other 3 18%
Unknown 6 35%
Readers by discipline Count As %
Chemistry 4 24%
Chemical Engineering 1 6%
Agricultural and Biological Sciences 1 6%
Mathematics 1 6%
Social Sciences 1 6%
Other 1 6%
Unknown 8 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 August 2017.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from Analytical & Bioanalytical Chemistry
#6,061
of 9,619 outputs
Outputs of similar age
#235,995
of 324,855 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#63
of 163 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,855 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 163 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.