↓ Skip to main content

Three Modes of Use of an LVAD as an RVAD

Overview of attention for article published in Artificial Organs, March 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Three Modes of Use of an LVAD as an RVAD
Published in
Artificial Organs, March 2014
DOI 10.1111/aor.12289
Pubmed ID
Authors

Michael C. Stevens, Shaun D. Gregory, Frank Nestler, Bruce Thomson, Jivesh Choudhary, Bruce Garlick, Jo P. Pauls, John F. Fraser, Daniel Timms

Abstract

Dual rotary left ventricular assist devices (LVADs) have been used clinically to support patients with biventricular failure. However, due to the lower vascular resistance in the pulmonary circulation compared with its systemic counterpart, excessively high pulmonary flow rates are expected if the right ventricular assist device (RVAD) is operated at its design LVAD speed. Three possible approaches are available to match the LVAD to the pulmonary circulation: operating the RVAD at a lower speed than the LVAD (mode 1), operating both pumps at their design speeds (mode 2) while relying on the cardiovascular system to adapt, and operating both pumps at their design speeds while restricting the diameter of the RVAD outflow graft (mode 3). In this study, each mode was characterized using in vitro and in vivo models of biventricular heart failure supported with two VentrAssist LVADs. The effect of each mode on arterial and atrial pressures and flow rates for low, medium, and high vascular resistances and three different contractility levels were evaluated. The amount of speed/diameter adjustment required to accommodate elevated pulmonary vascular resistance (PVR) during support with mode 3 was then investigated. Mode 1 required relatively low systemic vascular resistance to achieve arterial pressures less than 100 mm Hg in vitro, resulting in flow rates greater than 6 L/min. Mode 2 resulted in left atrial pressures above 25 mm Hg, unless left heart contractility was near-normal. In vitro, mode 3 resulted in expected arterial pressures and flow rates with an RVAD outflow diameter of 6.5 mm. In contrast, all modes were achievable in vivo, primarily due to higher RVAD outflow graft resistance (more than 500 dyn·s/cm(5) ), caused by longer cannula. Flow rates could be maintained during instances of elevated PVR by increasing the RVAD speed or expanding the outflow graft diameter using an externally applied variable graft occlusion device. In conclusion, suitable hemodynamics could be produced by either restricting or not restricting the right outflow graft diameter; however, the latter required an operation of the RVAD at lower than design speed. Adjustments in outflow restriction and/or RVAD speed are recommended to accommodate varying PVR.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 26%
Student > Master 7 21%
Student > Doctoral Student 5 15%
Researcher 3 9%
Student > Bachelor 2 6%
Other 2 6%
Unknown 6 18%
Readers by discipline Count As %
Engineering 15 44%
Medicine and Dentistry 6 18%
Agricultural and Biological Sciences 2 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Computer Science 1 3%
Other 0 0%
Unknown 9 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 April 2014.
All research outputs
#19,912,587
of 24,471,305 outputs
Outputs from Artificial Organs
#1,653
of 1,908 outputs
Outputs of similar age
#167,691
of 228,676 outputs
Outputs of similar age from Artificial Organs
#10
of 13 outputs
Altmetric has tracked 24,471,305 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,908 research outputs from this source. They receive a mean Attention Score of 4.5. This one is in the 6th percentile – i.e., 6% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 228,676 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.