↓ Skip to main content

Widespread Differential Maternal and Paternal Genome Effects on Fetal Bone Phenotype at Mid‐Gestation

Overview of attention for article published in Journal of Bone & Mineral Research, April 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Widespread Differential Maternal and Paternal Genome Effects on Fetal Bone Phenotype at Mid‐Gestation
Published in
Journal of Bone & Mineral Research, April 2014
DOI 10.1002/jbmr.2263
Pubmed ID
Authors

Ruidong Xiang, Alice MC Lee, Tanja Eindorf, Ali Javadmanesh, Mani Ghanipoor‐Samami, Madeleine Gugger, Carolyn J Fitzsimmons, Zbigniew A Kruk, Wayne S Pitchford, Alison J Leviton, Dana A Thomsen, Ian Beckman, Gail I Anderson, Brian M Burns, David L Rutley, Cory J Xian, Stefan Hiendleder

Abstract

Parent-of-origin-dependent (epi)genetic factors are important determinants of prenatal development that program adult phenotype. However, data on magnitude and specificity of maternal and paternal genome effects on fetal bone are lacking. We used an outbred bovine model to dissect and quantify effects of parental genomes, fetal sex, and nongenetic maternal effects on the fetal skeleton and analyzed phenotypic and molecular relationships between fetal muscle and bone. Analysis of 51 bone morphometric and weight parameters from 72 fetuses recovered at day 153 gestation (54% term) identified six principal components (PC1-6) that explained 80% of the variation in skeletal parameters. Parental genomes accounted for most of the variation in bone wet weight (PC1, 72.1%), limb ossification (PC2, 99.8%), flat bone size (PC4, 99.7%), and axial skeletal growth (PC5, 96.9%). Limb length showed lesser effects of parental genomes (PC3, 40.8%) and a significant nongenetic maternal effect (gestational weight gain, 29%). Fetal sex affected bone wet weight (PC1, p < 0.0001) and limb length (PC3, p < 0.05). Partitioning of variation explained by parental genomes revealed strong maternal genome effects on bone wet weight (74.1%, p < 0.0001) and axial skeletal growth (93.5%, p < 0.001), whereas paternal genome controlled limb ossification (95.1%, p < 0.0001). Histomorphometric data revealed strong maternal genome effects on growth plate height (98.6%, p < 0.0001) and trabecular thickness (85.5%, p < 0.0001) in distal femur. Parental genome effects on fetal bone were mirrored by maternal genome effects on fetal serum 25-hydroxyvitamin D (96.9%, p < 0.001) and paternal genome effects on alkaline phosphatase (90.0%, p < 0.001) and their correlations with maternally controlled bone wet weight and paternally controlled limb ossification, respectively. Bone wet weight and flat bone size correlated positively with muscle weight (r = 0.84 and 0.77, p < 0.0001) and negatively with muscle H19 expression (r = -0.34 and -0.31, p < 0.01). Because imprinted maternally expressed H19 regulates growth factors by miRNA interference, this suggests muscle-bone interaction via epigenetic factors.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 29%
Researcher 4 17%
Student > Master 3 13%
Student > Postgraduate 2 8%
Other 2 8%
Other 3 13%
Unknown 3 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 33%
Medicine and Dentistry 4 17%
Biochemistry, Genetics and Molecular Biology 3 13%
Psychology 3 13%
Social Sciences 1 4%
Other 1 4%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 October 2014.
All research outputs
#16,815,384
of 25,508,813 outputs
Outputs from Journal of Bone & Mineral Research
#3,951
of 4,798 outputs
Outputs of similar age
#139,932
of 241,285 outputs
Outputs of similar age from Journal of Bone & Mineral Research
#41
of 63 outputs
Altmetric has tracked 25,508,813 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,798 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.2. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 241,285 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.