↓ Skip to main content

Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges

Overview of attention for article published in Environmental Science and Pollution Research, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
1 X user
facebook
3 Facebook pages

Citations

dimensions_citation
70 Dimensions

Readers on

mendeley
145 Mendeley
Title
Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges
Published in
Environmental Science and Pollution Research, July 2017
DOI 10.1007/s11356-017-9662-5
Pubmed ID
Authors

Laure Wiest, Teofana Chonova, Alexandre Bergé, Robert Baudot, Frédérique Bessueille-Barbier, Linda Ayouni-Derouiche, Emmanuelle Vulliet

Abstract

It is well known that pharmaceuticals are not completely removed by conventional activated sludge wastewater treatment plants. Hospital effluents are of major concern, as they present high concentrations of pharmaceutically active compounds. Despite this, these specific effluents are usually co-treated with domestic wastewaters. Separate treatment has been recommended. However, there is a lack of information concerning the efficiency of separate hospital wastewater treatment by activated sludge, especially on the removal of pharmaceuticals. In this context, this article presents the results of a 2-year monitoring of conventional parameters, surfactants, gadolinium, and 13 pharmaceuticals on the specific study site SIPIBEL. This site allows the characterization of urban and hospital wastewaters and their separate treatment using the same process. Flow proportional sampling, solid-phase extraction, and liquid chromatography coupled with tandem mass spectrometry were used in order to obtain accurate data and limits of quantification consistent with ultra-trace detection. Thanks to these consolidated data, an in-depth characterization of urban and hospital wastewaters was realized, as well as a comparison of treatment efficiency between both effluents. Higher concentrations of organic carbon, AOX, phosphates, gadolinium, paracetamol, ketoprofen, and antibiotics were observed in hospital wastewaters compared to urban wastewaters. Globally higher removals were observed in the hospital wastewater treatment plant, and some parameters were shown to be of high importance regarding removal efficiencies: hydraulic retention time, redox conditions, and ambient temperature. Eleven pharmaceuticals were still quantified at relevant concentrations in hospital and urban wastewaters after treatment (e.g., up to 1 μg/L for sulfamethoxazole). However, as the urban flow was about 37 times higher than the hospital flow, the hospital contribution appeared relatively low compared to domestic discharges. Thanks to the SIPIBEL site, data obtained from this 2-year program are useful to evaluate the relevance of separate hospital wastewater treatment.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 145 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 145 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 20 14%
Student > Ph. D. Student 19 13%
Researcher 18 12%
Student > Bachelor 8 6%
Other 8 6%
Other 24 17%
Unknown 48 33%
Readers by discipline Count As %
Environmental Science 20 14%
Chemical Engineering 12 8%
Chemistry 11 8%
Engineering 11 8%
Agricultural and Biological Sciences 6 4%
Other 27 19%
Unknown 58 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 August 2017.
All research outputs
#15,687,152
of 23,911,072 outputs
Outputs from Environmental Science and Pollution Research
#3,425
of 9,883 outputs
Outputs of similar age
#172,457
of 285,937 outputs
Outputs of similar age from Environmental Science and Pollution Research
#72
of 202 outputs
Altmetric has tracked 23,911,072 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,883 research outputs from this source. They receive a mean Attention Score of 3.7. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 285,937 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 202 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.