↓ Skip to main content

Combination treatment with dendrosomal nanocurcumin and doxorubicin improves anticancer effects on breast cancer cells through modulating CXCR4/NF-κB/Smo regulatory network

Overview of attention for article published in Molecular Biology Reports, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
24 Mendeley
Title
Combination treatment with dendrosomal nanocurcumin and doxorubicin improves anticancer effects on breast cancer cells through modulating CXCR4/NF-κB/Smo regulatory network
Published in
Molecular Biology Reports, July 2017
DOI 10.1007/s11033-017-4115-2
Pubmed ID
Authors

Mohammad Amin Mahjoub, Babak Bakhshinejad, Majid Sadeghizadeh, Sadegh Babashah

Abstract

Despite advantageous antitumor properties of doxorubicin, the considerable cytotoxicity of this chemotherapeutic agent has made it necessary to develop combination treatment strategies. The aim of the current study was to investigate the possible synergism between dendrosomal nanocurcumin (DNC) and doxorubicin in eliciting anticancer effects on MDA-MB-231 metastatic breast cancer cells. The expression levels of CXCL12/CXCR4 axis and Hedgehog pathway genes were evaluated in patient-derived breast carcinoma tissues by qRT-PCR. MTT assay, Annexin V-FITC staining followed by flowcytomety and wound healing assay were used to measure the effects caused by DNC and doxorubicin, alone and in combination, on the viability, apoptosis induction, and migration of MDA-MB-231 cells, respectively. Also, qRT-PCR was exploited to analyze the expression of Smo, NF-κB and CXCR4 in cancer cells. Our results revealed that combination treatment with DNC and doxorubicin leads to significantly decreased viability, increased apoptosis, and reduced migration of breast cancer cells compared with using each drug alone. Also, combination treatment is more efficient that single treatment in reducing the expression levels of NF-κB and Smo transcripts. Our findings provide convincing support for the notion that DNC could synergistically enhance the anticancer effects of doxorubicin on metastatic breast cancer cells by improving its anti-proliferative, pro-apoptotic, and anti-migratory activities. This may be mediated, in part, by downregulating CXCR4, NF-κB, and Smo genes. Overall, the findings of the current study suggest that DNC might be used as a synergistic agent for enhancing therapeutic efficiency and reducing toxic effects of doxorubicin on breast cancer cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 17%
Professor > Associate Professor 4 17%
Student > Ph. D. Student 3 13%
Student > Master 2 8%
Student > Doctoral Student 1 4%
Other 2 8%
Unknown 8 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 17%
Medicine and Dentistry 3 13%
Chemical Engineering 2 8%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Psychology 1 4%
Other 3 13%
Unknown 10 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 December 2017.
All research outputs
#18,565,641
of 22,994,508 outputs
Outputs from Molecular Biology Reports
#1,626
of 2,950 outputs
Outputs of similar age
#243,256
of 317,332 outputs
Outputs of similar age from Molecular Biology Reports
#4
of 10 outputs
Altmetric has tracked 22,994,508 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,950 research outputs from this source. They receive a mean Attention Score of 2.2. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,332 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 6 of them.