↓ Skip to main content

Effect of a hemiuroid trematode on the hemocyte immune parameters of the cockle Anadara trapezia

Overview of attention for article published in Fish & Shellfish Immunology, July 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effect of a hemiuroid trematode on the hemocyte immune parameters of the cockle Anadara trapezia
Published in
Fish & Shellfish Immunology, July 2013
DOI 10.1016/j.fsi.2013.07.010
Pubmed ID
Authors

Cécile Dang, Thomas H. Cribb, Geoffrey Osborne, Minami Kawasaki, Anne-Sophie Bedin, Andrew C. Barnes

Abstract

When a trematode parasite penetrates a potential molluscan host, it has to circumvent the host's internal defense system. In molluscs, the primary effector cells of this system are the hemocytes which orchestrate many of the cellular and humoral immune functions. Survival of the parasite can occur only in the absence of a successful immune response, and continued development only if the host is physiologically suitable. This study investigated hemocytic response against asexual stages of a hemiuroid trematode by its host, the marine bivalve Anadara trapezia. Hemocyte characteristic (type, morphology) and function (mortality, phagocytosis and oxidative activity) were analyzed by flow cytometry in parasitized and non-parasitized cockles. A. trapezia possesses two types of hemocytes: amebocytes and erythrocytes. Analysis of histological section showed that there was no host hemocytic response around hemiuroid sporocysts. The infection induced a significant increase of the total circulating hemocytes with a higher proportion of erythrocytes relative to amebocytes, coupled with a lower phagocytosis rate and a statistically non-significant decrease of the intracellular oxidative activity. No significant differences were observed in hemocyte size and complexity, mortality, or phagocytic capacity. Our results indicate that in A. trapezia, hemiuroids modulate the immune response by increasing the number of circulating hemocytes and decreasing phagocytosis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 28%
Student > Doctoral Student 4 16%
Student > Bachelor 3 12%
Student > Ph. D. Student 2 8%
Other 1 4%
Other 3 12%
Unknown 5 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 32%
Environmental Science 6 24%
Veterinary Science and Veterinary Medicine 2 8%
Biochemistry, Genetics and Molecular Biology 1 4%
Psychology 1 4%
Other 2 8%
Unknown 5 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 April 2014.
All research outputs
#22,756,649
of 25,371,288 outputs
Outputs from Fish & Shellfish Immunology
#3,096
of 4,486 outputs
Outputs of similar age
#183,496
of 206,369 outputs
Outputs of similar age from Fish & Shellfish Immunology
#24
of 28 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,486 research outputs from this source. They receive a mean Attention Score of 1.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 206,369 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.