↓ Skip to main content

Nonenzymatic oxygenated metabolites of α-linolenic acid B1- and L1-phytoprostanes protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-γ…

Overview of attention for article published in Free Radical Biology & Medicine, May 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
64 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nonenzymatic oxygenated metabolites of α-linolenic acid B1- and L1-phytoprostanes protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-γ activation
Published in
Free Radical Biology & Medicine, May 2014
DOI 10.1016/j.freeradbiomed.2014.04.025
Pubmed ID
Authors

Luisa Minghetti, Rachele Salvi, Maria Lavinia Salvatori, Maria Antonietta Ajmone-Cat, Chiara De Nuccio, Sergio Visentin, Valérie Bultel-Poncé, Camille Oger, Alexandre Guy, Jean-Marie Galano, Anita Greco, Antonietta Bernardo, Thierry Durand

Abstract

Phytoprostanes (PhytoP's) are formed in higher plants from α-linolenic acid via a nonenzymatic free radical-catalyzed pathway and act as endogenous mediators capable of protecting cells from damage under various conditions related to oxidative stress. Humans are exposed to PhytoP's, as they are present in relevant quantities in vegetable food and pollen. The uptake of PhytoP's through the olfactory epithelium of the nasal mucosa, upon pollen grain inhalation, is of interest as the intranasal pathway is regarded as a direct route of communication between the environment and the brain. On this basis, we sought to investigate the potential activities of PhytoP's on immature cells of the central nervous system, which are particularly susceptible to oxidative stress. In neuroblastoma SH-SY5Y cells, used as a model for undifferentiated neurons, B1-PhytoP's, but not F1-PhytoP's, increased cell metabolic activity and protected them from oxidant damage caused by H2O2. Moreover, B1-PhytoP's induced a moderate depolarization of the mitochondrial inner membrane potential. These effects were prevented by the PPAR-γ antagonist GW9662. When SH-SY5Y cells were induced to differentiate toward a more mature phenotype, they became resistant to B1-PhytoP activities. B1-PhytoP's also influenced immature cells of an oligodendroglial line, as they increased the metabolic activity of oligodendrocyte progenitors and strongly accelerated their differentiation to immature oligodendrocytes, through mechanisms at least partially dependent on PPAR-γ activity. However, B1-PhytoP's did not protect oligodendrocyte progenitors against oxidant injury. Taken together, these data suggest that B1-PhytoP's, through novel mechanisms involving PPAR-γ, can specifically affect immature brain cells, such as neuroblasts and oligodendrocyte progenitors, thereby conferring neuroprotection against oxidant injury and promoting myelination.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 2%
Unknown 43 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 9 20%
Researcher 7 16%
Student > Ph. D. Student 7 16%
Student > Doctoral Student 4 9%
Student > Bachelor 4 9%
Other 4 9%
Unknown 9 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 25%
Medicine and Dentistry 8 18%
Chemistry 5 11%
Biochemistry, Genetics and Molecular Biology 3 7%
Neuroscience 2 5%
Other 5 11%
Unknown 10 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 May 2014.
All research outputs
#20,674,485
of 25,394,764 outputs
Outputs from Free Radical Biology & Medicine
#4,420
of 5,449 outputs
Outputs of similar age
#178,421
of 242,288 outputs
Outputs of similar age from Free Radical Biology & Medicine
#39
of 43 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,449 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 242,288 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.