↓ Skip to main content

Loss of Function Mutation in the Palmitoyl-Transferase HHAT Leads to Syndromic 46,XY Disorder of Sex Development by Impeding Hedgehog Protein Palmitoylation and Signaling

Overview of attention for article published in PLoS Genetics, May 2014
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

news
5 news outlets
blogs
1 blog
twitter
2 X users

Citations

dimensions_citation
66 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Loss of Function Mutation in the Palmitoyl-Transferase HHAT Leads to Syndromic 46,XY Disorder of Sex Development by Impeding Hedgehog Protein Palmitoylation and Signaling
Published in
PLoS Genetics, May 2014
DOI 10.1371/journal.pgen.1004340
Pubmed ID
Authors

Patrick Callier, Pierre Calvel, Armine Matevossian, Periklis Makrythanasis, Pascal Bernard, Hiroshi Kurosaka, Anne Vannier, Christel Thauvin-Robinet, Christelle Borel, Séverine Mazaud-Guittot, Antoine Rolland, Christèle Desdoits-Lethimonier, Michel Guipponi, Céline Zimmermann, Isabelle Stévant, Françoise Kuhne, Béatrice Conne, Federico Santoni, Sandy Lambert, Frederic Huet, Francine Mugneret, Jadwiga Jaruzelska, Laurence Faivre, Dagmar Wilhelm, Bernard Jégou, Paul A. Trainor, Marilyn D. Resh, Stylianos E. Antonarakis, Serge Nef

Abstract

The Hedgehog (Hh) family of secreted proteins act as morphogens to control embryonic patterning and development in a variety of organ systems. Post-translational covalent attachment of cholesterol and palmitate to Hh proteins are critical for multimerization and long range signaling potency. However, the biological impact of lipid modifications on Hh ligand distribution and signal reception in humans remains unclear. In the present study, we report a unique case of autosomal recessive syndromic 46,XY Disorder of Sex Development (DSD) with testicular dysgenesis and chondrodysplasia resulting from a homozygous G287V missense mutation in the hedgehog acyl-transferase (HHAT) gene. This mutation occurred in the conserved membrane bound O-acyltransferase (MBOAT) domain and experimentally disrupted the ability of HHAT to palmitoylate Hh proteins such as DHH and SHH. Consistent with the patient phenotype, HHAT was found to be expressed in the somatic cells of both XX and XY gonads at the time of sex determination, and Hhat loss of function in mice recapitulates most of the testicular, skeletal, neuronal and growth defects observed in humans. In the developing testis, HHAT is not required for Sertoli cell commitment but plays a role in proper testis cord formation and the differentiation of fetal Leydig cells. Altogether, these results shed new light on the mechanisms of action of Hh proteins. Furthermore, they provide the first clinical evidence of the essential role played by lipid modification of Hh proteins in human testicular organogenesis and embryonic development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Switzerland 1 2%
Unknown 62 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 25%
Researcher 13 20%
Student > Bachelor 6 9%
Student > Master 6 9%
Other 4 6%
Other 10 16%
Unknown 9 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 22 34%
Agricultural and Biological Sciences 13 20%
Medicine and Dentistry 13 20%
Environmental Science 1 2%
Psychology 1 2%
Other 3 5%
Unknown 11 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 42. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2014.
All research outputs
#995,763
of 25,461,852 outputs
Outputs from PLoS Genetics
#708
of 8,970 outputs
Outputs of similar age
#9,517
of 242,323 outputs
Outputs of similar age from PLoS Genetics
#20
of 171 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 8,970 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 17.8. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 242,323 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 171 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.