↓ Skip to main content

Induction of alpha-methylacyl-CoA racemase by miR-138 via up-regulation of β-catenin in prostate cancer cells

Overview of attention for article published in Journal of Cancer Research and Clinical Oncology, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
googleplus
1 Google+ user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
14 Mendeley
Title
Induction of alpha-methylacyl-CoA racemase by miR-138 via up-regulation of β-catenin in prostate cancer cells
Published in
Journal of Cancer Research and Clinical Oncology, July 2017
DOI 10.1007/s00432-017-2484-5
Pubmed ID
Authors

Kati Erdmann, Knut Kaulke, Christiane Rieger, Manfred P. Wirth, Susanne Fuessel

Abstract

Alpha-methylacyl-CoA racemase (AMACR) is highly overexpressed in prostate cancer (PCa) and its transcriptional regulators include various transcription factors and CTNNB1/β-catenin. Our previous findings suggested a post-transcriptional regulation by the tumor-suppressive microRNA miR-138 in PCa. Thus, the aim of this study was to demonstrate the direct interaction of miR-138 with the 3'-UTR of AMACR. Furthermore, the influence of miR-138 on the expression of AMACR and selected AMACR regulators was investigated in PCa cells. Using DU-145, PC-3, and LNCaP PCa cells, the effect of exogenous miR-138 on AMACR and selected AMACR regulators was determined by quantitative PCR and Western blot. Luciferase reporter assays were used to verify target and promoter interaction. Using a luciferase reporter assay a direct interaction of miR-138 with the AMACR-3'-UTR was confirmed. Surprisingly, AMACR expression was up-regulated by up to 125% by exogenous miR-138 in PCa cells. The lack of any miR-138 binding sites within the AMACR promoter suggested an indirect mechanism of up-regulation. Therefore, the effect of miR-138 on selected AMACR regulators including CTNNB1/β-catenin, RELA, SMAD4, SP1, and TCF4 was evaluated. MiR-138 solely evoked an up-regulation of CTNNB1 mRNA expression and β-catenin protein levels by up to 75%. Further in silico analysis revealed a binding site for miR-138 within the CTNNB1 promoter. MiR-138 could enhance the activity of the CTNNB1 promoter, which in turn could contribute to the observed AMACR up-regulation. The present findings suggest that miR-138 can indirectly up-regulate AMACR via transcriptional induction of CTNNB1, at least in vitro in PCa cells.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 21%
Student > Ph. D. Student 3 21%
Student > Bachelor 2 14%
Student > Master 2 14%
Professor 1 7%
Other 1 7%
Unknown 2 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 29%
Medicine and Dentistry 2 14%
Biochemistry, Genetics and Molecular Biology 1 7%
Computer Science 1 7%
Materials Science 1 7%
Other 0 0%
Unknown 5 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 October 2017.
All research outputs
#15,508,795
of 23,815,455 outputs
Outputs from Journal of Cancer Research and Clinical Oncology
#1,408
of 2,632 outputs
Outputs of similar age
#190,516
of 317,686 outputs
Outputs of similar age from Journal of Cancer Research and Clinical Oncology
#19
of 39 outputs
Altmetric has tracked 23,815,455 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,632 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,686 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.