↓ Skip to main content

Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy

Overview of attention for article published in Brain, August 2009
Altmetric Badge

Mentioned by

twitter
1 X user
f1000
1 research highlight platform

Citations

dimensions_citation
109 Dimensions

Readers on

mendeley
68 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy
Published in
Brain, August 2009
DOI 10.1093/brain/awp221
Pubmed ID
Authors

Rita Horvath, John P. Kemp, Helen A. L. Tuppen, Gavin Hudson, Anders Oldfors, Suely K. N. Marie, Ali-Reza Moslemi, Serenella Servidei, Elisabeth Holme, Sara Shanske, Gittan Kollberg, Parul Jayakar, Angela Pyle, Harold M. Marks, Elke Holinski-Feder, Mena Scavina, Maggie C. Walter, Jorida Çoku, Andrea Günther-Scholz, Paul M. Smith, Robert McFarland, Zofia M. A. Chrzanowska-Lightowlers, Robert N. Lightowlers, Michio Hirano, Hanns Lochmüller, Robert W. Taylor, Patrick F. Chinnery, Mar Tulinius, Salvatore DiMauro

Abstract

Childhood-onset mitochondrial encephalomyopathies are usually severe, relentlessly progressive conditions that have a fatal outcome. However, a puzzling infantile disorder, long known as 'benign cytochrome c oxidase deficiency myopathy' is an exception because it shows spontaneous recovery if infants survive the first months of life. Current investigations cannot distinguish those with a good prognosis from those with terminal disease, making it very difficult to decide when to continue intensive supportive care. Here we define the principal molecular basis of the disorder by identifying a maternally inherited, homoplasmic m.14674T>C mt-tRNA(Glu) mutation in 17 patients from 12 families. Our results provide functional evidence for the pathogenicity of the mutation and show that tissue-specific mechanisms downstream of tRNA(Glu) may explain the spontaneous recovery. This study provides the rationale for a simple genetic test to identify infants with mitochondrial myopathy and good prognosis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 68 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 18%
Researcher 10 15%
Student > Master 10 15%
Professor > Associate Professor 7 10%
Professor 6 9%
Other 16 24%
Unknown 7 10%
Readers by discipline Count As %
Medicine and Dentistry 20 29%
Biochemistry, Genetics and Molecular Biology 15 22%
Agricultural and Biological Sciences 9 13%
Neuroscience 4 6%
Arts and Humanities 2 3%
Other 5 7%
Unknown 13 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 December 2013.
All research outputs
#13,352,626
of 22,649,029 outputs
Outputs from Brain
#5,685
of 7,072 outputs
Outputs of similar age
#73,471
of 91,111 outputs
Outputs of similar age from Brain
#28
of 37 outputs
Altmetric has tracked 22,649,029 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,072 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.2. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 91,111 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.