↓ Skip to main content

A coupled diffusion-fluid pressure model to predict cell density distribution for cells encapsulated in a porous hydrogel scaffold under mechanical loading

Overview of attention for article published in Computers in Biology & Medicine, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A coupled diffusion-fluid pressure model to predict cell density distribution for cells encapsulated in a porous hydrogel scaffold under mechanical loading
Published in
Computers in Biology & Medicine, August 2017
DOI 10.1016/j.compbiomed.2017.08.003
Pubmed ID
Authors

Feihu Zhao, Ted J. Vaughan, Myles J. Mc Garrigle, Laoise M. McNamara

Abstract

Tissue formation within tissue engineering (TE) scaffolds is preceded by growth of the cells throughout the scaffold volume and attachment of cells to the scaffold substrate. It is known that mechanical stimulation, in the form of fluid perfusion or mechanical strain, enhances cell differentiation and overall tissue formation. However, due to the complex multi-physics environment of cells within TE scaffolds, cell transport under mechanical stimulation is not fully understood. Therefore, in this study, we have developed a coupled multiphysics model to predict cell density distribution in a TE scaffold. In this model, cell transport is modelled as a thermal conduction process, which is driven by the pore fluid pressure under applied loading. As a case study, the model is investigated to predict the cell density patterns of pre-osteoblasts MC3T3-e1 cells under a range of different loading regimes, to obtain an understanding of desirable mechanical stimulation that will enhance cell density distribution within TE scaffolds. The results of this study have demonstrated that fluid perfusion can result in a higher cell density in the scaffold region closed to the outlet, while cell density distribution under mechanical compression was similar with static condition. More importantly, the study provides a novel computational approach to predict cell distribution in TE scaffolds under mechanical loading.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 32%
Student > Master 5 23%
Student > Bachelor 2 9%
Researcher 2 9%
Other 1 5%
Other 0 0%
Unknown 5 23%
Readers by discipline Count As %
Engineering 7 32%
Chemical Engineering 3 14%
Biochemistry, Genetics and Molecular Biology 1 5%
Psychology 1 5%
Chemistry 1 5%
Other 3 14%
Unknown 6 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 August 2017.
All research outputs
#15,523,434
of 25,382,440 outputs
Outputs from Computers in Biology & Medicine
#1,247
of 2,768 outputs
Outputs of similar age
#176,245
of 327,246 outputs
Outputs of similar age from Computers in Biology & Medicine
#12
of 36 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,768 research outputs from this source. They receive a mean Attention Score of 3.6. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,246 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.