↓ Skip to main content

LcMCII-1 is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis

Overview of attention for article published in Plant Cell Reports, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
22 Mendeley
Title
LcMCII-1 is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis
Published in
Plant Cell Reports, September 2016
DOI 10.1007/s00299-016-2059-y
Pubmed ID
Authors

Congcong Wang, Peitao Lü, Silin Zhong, Houbin Chen, Biyan Zhou

Abstract

LcMCII - 1 is a type II metacaspase. Over-expression of LcMCII- 1 in Arabidopsis promoted ROS-dependent and natural senescence. Virus-induced LcMCII- 1 silencing delayed the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis . Litchi is an evergreen woody fruit tree that is widely cultivated in subtropical and tropical regions. Its floral buds are mixed with axillary or apical panicle primordia, leaf primordia and rudimentary leaves. A low spring temperature is vital for litchi production as it promotes the abscission of the rudimentary leaves, which could otherwise prevent panicle development. Hence, climate change could present additional challenges for litchi production. We previously reported that reactive oxygen species (ROS) can substitute low-temperature treatment to induce the senescence of rudimentary leaves. We have now identified from RNA-Seq data a litchi type II metacaspase gene, LcMCII-1, that is responsive to ROS. Silencing LcMCII-1 by virus-induced gene silencing delayed ROS-dependent senescence. The ectopic over-expression of LcMCII-1 in transgenic Arabidopsis promoted ROS-dependent and natural senescence. Consistently, the transient expression of LcMCII-1 in tobacco leaf by agroinfiltration resulted in leaf yellowing. Our findings demonstrate that LcMCII-1 is positively involved in the regulation of rudimentary leaf senescence in litchi and provide a new target for the future molecular breeding of new cultivars that can set fruit in warmer climates.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 5%
Unknown 21 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 18%
Researcher 3 14%
Student > Postgraduate 2 9%
Student > Master 2 9%
Professor > Associate Professor 2 9%
Other 2 9%
Unknown 7 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 41%
Biochemistry, Genetics and Molecular Biology 4 18%
Social Sciences 1 5%
Medicine and Dentistry 1 5%
Unknown 7 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 March 2020.
All research outputs
#14,360,215
of 22,996,001 outputs
Outputs from Plant Cell Reports
#1,641
of 2,195 outputs
Outputs of similar age
#185,174
of 323,163 outputs
Outputs of similar age from Plant Cell Reports
#24
of 34 outputs
Altmetric has tracked 22,996,001 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,195 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,163 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.