↓ Skip to main content

Expressional changes in growth and inflammatory mediators during Achilles tendon repair in diabetic rats: new insights into a possible basis for compromised healing

Overview of attention for article published in Cell and Tissue Research, May 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
36 Mendeley
Title
Expressional changes in growth and inflammatory mediators during Achilles tendon repair in diabetic rats: new insights into a possible basis for compromised healing
Published in
Cell and Tissue Research, May 2014
DOI 10.1007/s00441-014-1871-3
Pubmed ID
Authors

Aisha S. Ahmed, Jian Li, Nicos Schizas, Mahmood Ahmed, Claes-Goran Östenson, Paul Salo, Carolyn Hewitt, David A. Hart, Paul W. Ackermann

Abstract

Dysregulation of growth and inflammatory mediators might contribute to defective tissue homeostasis and healing, as commonly observed in sedentary lifestyles and in conditions such as diabetes mellitus type-2. The present study aims to assess expression changes in growth and inflammatory mediators in the intact and healing Achilles tendon of type-2 diabetic rats. The study utilized 11 male diabetic Goto-Kakizaki (GK) and 10 age- and sex-matched Wistar control rats. The right Achilles tendon was transected in all animals, whereas the left Achilles tendon remained intact. At 2 weeks post-injury, intact and injured tendons were assessed for gene expression for VEGF, Tβ-4, TGF-β1, IGF-1, COX-2, iNOS, HIF-1α, and IL-1β by quantitative reverse transcription plus the polymerase chain reaction, and their protein distribution was studied by immunolocalization. In injured tendons of diabetic GK rats, VEGF and Tβ-4 mRNA and corresponding protein levels were significantly down-regulated compared with those of injured Wistar controls. Compared with intact tendons of diabetic GK rats, TGF-β1, IGF-1, and COX-2 RNA levels were higher, whereas iNOS mRNA levels were lower in injured tendons of diabetic GK rats. Within Wistar controls, healing at 2 weeks post-injury led to significantly down-regulated VEGF and iNOS mRNA levels in injured tendons, whereas TGF-β1 and HIF-1α mRNA levels increased compared with intact tendons. Thus, dysregulation of inflammatory and growth mediators occurs in type-2 diabetes injured tendons. Our data suggest that therapeutic modulation of Tβ-4 and VEGF represent a new regenerative approach in operated, injured, or degenerative tendon diseases in diabetes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 19%
Student > Bachelor 4 11%
Student > Postgraduate 4 11%
Student > Ph. D. Student 4 11%
Researcher 3 8%
Other 7 19%
Unknown 7 19%
Readers by discipline Count As %
Medicine and Dentistry 13 36%
Nursing and Health Professions 4 11%
Agricultural and Biological Sciences 4 11%
Biochemistry, Genetics and Molecular Biology 2 6%
Sports and Recreations 2 6%
Other 1 3%
Unknown 10 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 June 2014.
All research outputs
#16,061,913
of 23,839,820 outputs
Outputs from Cell and Tissue Research
#1,468
of 2,279 outputs
Outputs of similar age
#136,573
of 229,404 outputs
Outputs of similar age from Cell and Tissue Research
#23
of 47 outputs
Altmetric has tracked 23,839,820 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,279 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 229,404 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.