↓ Skip to main content

Photosynthetic and biochemical mechanisms of an EMS-mutagenized cowpea associated with its resistance to cowpea severe mosaic virus

Overview of attention for article published in Plant Cell Reports, November 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (63rd percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
38 Mendeley
Title
Photosynthetic and biochemical mechanisms of an EMS-mutagenized cowpea associated with its resistance to cowpea severe mosaic virus
Published in
Plant Cell Reports, November 2016
DOI 10.1007/s00299-016-2074-z
Pubmed ID
Authors

Pedro F. N. Souza, Fredy D. A. Silva, Fabricio E. L. Carvalho, Joaquim A. G. Silveira, Ilka M. Vasconcelos, Jose T. A. Oliveira

Abstract

The seed treatment of a CPSMV-susceptible cowpea genotype with the mutagenic agent EMS generated mutagenized resistant plantlets that respond to the virus challenge by activating biochemical and physiological defense mechanisms. Cowpea is an important crop that makes major nutritional contributions particularly to the diet of the poor population worldwide. However, its production is low, because cowpea is naturally exposed to several abiotic and biotic stresses, including viral agents. Cowpea severe mosaic virus (CPSMV) drastically affects cowpea grain production. This study was conducted to compare photosynthetic and biochemical parameters of a CPSMV-susceptible cowpea (CE-31 genotype) and its derived ethyl methanesulfonate-mutagenized resistant plantlets, both challenged with CPSMV, to shed light on the mechanisms of virus resistance. CPSMV inoculation was done in the fully expanded secondary leaves, 15 days after planting. At 7 days post-inoculation, in vivo photosynthetic parameters were measured and leaves collected for biochemical analysis. CPSMV-inoculated mutagenized-resistant cowpea plantlets (MCPI) maintained higher photosynthesis index, chlorophyll, and carotenoid contents in relation to the susceptible (CE-31) CPSMV-inoculated cowpea (CPI). Visually, the MCPI leaves did not exhibit any viral symptoms neither the presence of the virus as examined by RT-PCR. In addition, MCPI showed higher SOD, GPOX, chitinase, and phenylalanine ammonia lyase activities, H2O2, phenolic contents, and cell wall lignifications, but lower CAT and APX activities in comparison to CPI. All together, these photosynthetic and biochemical changes might have contributed for the CPSMS resistance of MCPI. Contrarily, CPI plantlets showed CPSMV accumulation, severe disease symptoms, reduction in the photosynthesis-related parameters, chlorophyll, carotenoid, phenolic compound, and H2O2 contents, in addition to increased β-1,3-glucanase, and catalase activities that might have favored viral infection.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 18%
Researcher 6 16%
Student > Doctoral Student 4 11%
Professor > Associate Professor 3 8%
Student > Ph. D. Student 3 8%
Other 6 16%
Unknown 9 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 29%
Biochemistry, Genetics and Molecular Biology 8 21%
Medicine and Dentistry 2 5%
Chemical Engineering 1 3%
Neuroscience 1 3%
Other 1 3%
Unknown 14 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 October 2019.
All research outputs
#7,697,099
of 23,577,654 outputs
Outputs from Plant Cell Reports
#779
of 2,232 outputs
Outputs of similar age
#113,183
of 311,512 outputs
Outputs of similar age from Plant Cell Reports
#11
of 40 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 2,232 research outputs from this source. They receive a mean Attention Score of 4.1. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,512 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.