↓ Skip to main content

The Anti-Aging Effect of Erythropoietin via the ERK/Nrf2-ARE Pathway in Aging Rats

Overview of attention for article published in Journal of Molecular Neuroscience, February 2017
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
29 Mendeley
Title
The Anti-Aging Effect of Erythropoietin via the ERK/Nrf2-ARE Pathway in Aging Rats
Published in
Journal of Molecular Neuroscience, February 2017
DOI 10.1007/s12031-017-0885-1
Pubmed ID
Authors

Haiqin Wu, Jiaxin Zhao, Mengyi Chen, Huqing Wang, Qingling Yao, Jiaxin Fan, Meng Zhang

Abstract

Erythropoietin (EPO) has a neuroprotective effect and can resist aging, which most likely occur through EPO increasing the activity of antioxidant enzymes and scavenging free radicals. In this study, we verified the anti-aging function of EPO and discussed the mechanism occurring through the extracellular signal-regulated kinase (ERK)/NF-E2-related factor 2 (Nrf2)-ARE pathway. A rat model of aging was induced by the continuous subcutaneous injection of 5 % D-galactose for 6 weeks. At the beginning of the sixth week, physiological saline or EPO was administered twice per day through a lateral ventricle system for a total of 7 days. In one group, 2 μl PD98059 was administered 30 min before EPO. Learning and memory ability were analyzed with the Morris water maze system. HE staining was used to observe the morphological changes in the neurons in the hippocampus, and immunohistochemical staining as well as Western blots were carried out to detect the expression of ERK for each group of rats and the expression of phosphorylated-ERK (P-ERK), Nrf2, and superoxide dismutase (SOD). Real-Time PCR was carried out to detect the amount of Nrf2 mRNA and the KEAP1 mRNA expression. EPO can significantly improve learning and memory ability in aging rats and can provide protection against aging by improving the hippocampus morphology. Immunohistochemical staining and Western blots showed P-ERK, Nrf2, and Cu-Zn SOD decreases in aging rats compared to the normal group, while the expression for those proteins increased after EPO intervention. PD98059 inhibited the enhanced expression of P-ERK, Nrf2, and Cu-Zn SOD induced by EPO. Real-Time PCR results suggested that the trend of Nrf2mRNA expression was the same as that for the proteins, which confirmed that the enhancement occurred at the gene level. As such, EPO can significantly resist or delay aging and protect the brain by reducing oxidative stress. The most likely mechanism is that EPO can promote the ERK/Nrf2-ARE pathway in aging rats and that PD98059 can inhibit that process. These findings may facilitate further studies on the mechanism of aging and applications for the neuroprotective properties of EPO for clinical treatments.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 14%
Researcher 4 14%
Student > Master 4 14%
Student > Bachelor 2 7%
Student > Doctoral Student 2 7%
Other 3 10%
Unknown 10 34%
Readers by discipline Count As %
Medicine and Dentistry 8 28%
Neuroscience 4 14%
Agricultural and Biological Sciences 2 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 7%
Psychology 1 3%
Other 1 3%
Unknown 11 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 August 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Journal of Molecular Neuroscience
#1,330
of 1,643 outputs
Outputs of similar age
#365,573
of 424,791 outputs
Outputs of similar age from Journal of Molecular Neuroscience
#12
of 14 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,643 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 424,791 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.