↓ Skip to main content

Intraspecific variation in the growth and survival of juvenile fish exposed to Eucalyptus leachate

Overview of attention for article published in Ecology and Evolution, September 2013
Altmetric Badge

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Intraspecific variation in the growth and survival of juvenile fish exposed to Eucalyptus leachate
Published in
Ecology and Evolution, September 2013
DOI 10.1002/ece3.757
Pubmed ID
Authors

John R. Morrongiello, Nicholas R. Bond, David A. Crook, Bob B. M. Wong

Abstract

Whilst changes in freshwater assemblages along gradients of environmental stress have been relatively well studied, we know far less about intraspecific variation to these same stressors. A stressor common in fresh waters worldwide is leachates from terrestrial plants. Leachates alter the physiochemical environment of fresh waters by lowering pH and dissolved oxygen and also releasing toxic compounds such as polyphenols and tannins, all of which can be detrimental to aquatic organisms. We investigated how chronic exposure to Eucalyptus leaf leachate affected the growth and survival of juvenile southern pygmy perch (Nannoperca australis) collected from three populations with different litter inputs, hydrology and observed leachate concentrations. Chronic exposure to elevated leachate levels negatively impacted growth and survival, but the magnitude of these lethal and sublethal responses was conditional on body size and source population. Bigger fish had increased survival at high leachate levels but overall slower growth rates. Body size also varied among populations and fish from the population exposed to the lowest natural leachate concentrations had the highest average stress tolerance. Significant intraspecific variation in both growth and survival caused by Eucalyptus leachate exposure indicates that the magnitude (but not direction) of these stress responses varies across the landscape. This raises the potential for leachate-induced selection to operate at an among-population scale. The importance of body size demonstrates that the timing of leachate exposure during ontogeny is central in determining the magnitude of biological response, with early life stages being most vulnerable. Overall, we demonstrate that Eucalyptus leachates are prevalent and potent selective agents that can trigger important sublethal impacts, beyond those associated with more familiar fish kills, and reiterate that dissolved organic carbon is more than just an energy source in aquatic environments.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 2%
Unknown 41 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 26%
Researcher 9 21%
Other 6 14%
Student > Master 4 10%
Student > Bachelor 3 7%
Other 5 12%
Unknown 4 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 43%
Environmental Science 11 26%
Chemical Engineering 1 2%
Biochemistry, Genetics and Molecular Biology 1 2%
Veterinary Science and Veterinary Medicine 1 2%
Other 4 10%
Unknown 6 14%