↓ Skip to main content

Evolutionary origins of Pax6 control of crystallin genes

Overview of attention for article published in Genome Biology & Evolution, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evolutionary origins of Pax6 control of crystallin genes
Published in
Genome Biology & Evolution, August 2017
DOI 10.1093/gbe/evx153
Pubmed ID
Authors

Ales Cvekl, Yilin Zhao, Rebecca McGreal, Qing Xie, Xun Gu, Deyou Zheng

Abstract

The birth of novel genes, including their cell-specific transcriptional control, is a major source of evolutionary innovation. The lens-preferred proteins, crystallins (vertebrates: α- and β/γ-crystallins), provide a gateway to study eye evolution. Diversity of crystallins was thought to originate from convergent evolution through multiple, independent formation of Pax6/PaxB-binding sites within the promoters of genes able to act as crystallins. Here, we propose that αB-crystallin arose from a duplication of small heat shock protein (Hspb1-like) gene accompanied by Pax6-site and heat shock element (HSE) formation, followed by another duplication to generate the αA-crystallin gene in which HSE was converted into another Pax6-binding site. The founding β/γ-crystallin gene arose from the ancestral Hspb1-like gene promoter inserted into a Ca2+-binding protein coding region, early in the cephalochordate/tunicate lineage. Likewise, an ancestral aldehyde dehydrogenase (Aldh) gene, through multiple gene duplications, expanded into a multigene family, with specific genes expressed in invertebrate lenses (Ω-crystallin/Aldh1a9) and both vertebrate lenses (η-crystallin/Aldh1a7 and Aldh3a1) and corneas (Aldh3a1). Collectively, the present data reconstruct the evolution of diverse crystallin gene families.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 24%
Student > Bachelor 2 10%
Other 2 10%
Professor > Associate Professor 2 10%
Student > Master 2 10%
Other 3 14%
Unknown 5 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 29%
Agricultural and Biological Sciences 4 19%
Medicine and Dentistry 2 10%
Nursing and Health Professions 1 5%
Environmental Science 1 5%
Other 1 5%
Unknown 6 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 September 2017.
All research outputs
#16,051,091
of 25,382,440 outputs
Outputs from Genome Biology & Evolution
#2,460
of 3,033 outputs
Outputs of similar age
#175,523
of 309,216 outputs
Outputs of similar age from Genome Biology & Evolution
#80
of 94 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,033 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.4. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,216 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 94 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.