↓ Skip to main content

Illusory limb movements activate different brain networks than imposed limb movements: an ALE meta-analysis

Overview of attention for article published in Brain Imaging and Behavior, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
53 Mendeley
Title
Illusory limb movements activate different brain networks than imposed limb movements: an ALE meta-analysis
Published in
Brain Imaging and Behavior, August 2017
DOI 10.1007/s11682-017-9756-1
Pubmed ID
Authors

Jeffrey M. Kenzie, Ettie Ben-Shabat, Gemma Lamp, Sean P. Dukelow, Leeanne M. Carey

Abstract

Proprioceptive information allows us to perform smooth coordinated movements by constantly updating us with knowledge of the position of our limbs in space. How this information is combined and processed to form conscious perceptions of limb position is still relatively unknown. Several functional neuroimaging studies have attempted to tease out the brain areas responsible for proprioceptive processing in the human brain. Yet there still exists some disagreement in the specific brain regions involved. In order to consolidate the current knowledge in the field, we performed a systematic review of the literature and an activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies of proprioception. We identified 12 studies that used a proprioceptive stimulus of the upper extremity for ALE analysis (n = 141 participants). Two types of stimuli (illusion of movement induced through muscle tendon vibration and passive/imposed movements) were found to be most commonly used to probe proprioceptive networks in the brain. ALE analysis of these two stimulus types revealed that both were associated with activation in the left precentral, postcentral, and anterior cingulate gyri. Interestingly, different patterns of activation were also observed between illusions of movement and imposed movement. In the left hemisphere, imposed movements resulted in activations that were more inferior in the post-central gyrus. In the right hemisphere, imposed movements resulted in two clusters of activation in the inferior aspect of the precentral gyrus and the hand area of the post-central gyrus, while illusions of movement resulted in a single cluster of activation in the inferior parietal lobule. These results suggest that illusions of movement without limb displacement may activate different brain areas compared with actual limb displacement. Careful consideration should be made in future studies when selecting a proprioceptive stimulus to probe these brain networks.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 19%
Student > Postgraduate 6 11%
Student > Master 6 11%
Student > Ph. D. Student 5 9%
Student > Bachelor 5 9%
Other 3 6%
Unknown 18 34%
Readers by discipline Count As %
Psychology 8 15%
Engineering 7 13%
Neuroscience 7 13%
Nursing and Health Professions 5 9%
Medicine and Dentistry 4 8%
Other 5 9%
Unknown 17 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 February 2021.
All research outputs
#13,874,942
of 22,999,744 outputs
Outputs from Brain Imaging and Behavior
#529
of 1,155 outputs
Outputs of similar age
#166,861
of 318,512 outputs
Outputs of similar age from Brain Imaging and Behavior
#13
of 25 outputs
Altmetric has tracked 22,999,744 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,155 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,512 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.