↓ Skip to main content

Glucotoxicity promotes aberrant activation and mislocalization of Ras-related C3 botulinum toxin substrate 1 [Rac1] and metabolic dysfunction in pancreatic islet β-cells: reversal of such metabolic…

Overview of attention for article published in Apoptosis, August 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
14 Mendeley
Title
Glucotoxicity promotes aberrant activation and mislocalization of Ras-related C3 botulinum toxin substrate 1 [Rac1] and metabolic dysfunction in pancreatic islet β-cells: reversal of such metabolic defects by metformin
Published in
Apoptosis, August 2017
DOI 10.1007/s10495-017-1409-8
Pubmed ID
Authors

Sartaj Baidwan, Anil Chekuri, DiAnna L. Hynds, Anjaneyulu Kowluru

Abstract

Emerging evidence suggests that long-term exposure of insulin-secreting pancreatic β-cells to hyperglycemic (HG; glucotoxic) conditions promotes oxidative stress, which, in turn, leads to stress kinase activation, mitochondrial dysfunction, loss of nuclear structure and integrity and cell apoptosis. Original observations from our laboratory have proposed that Rac1 plays a key regulatory role in the generation of oxidative stress and downstream signaling events culminating in the onset of dysfunction of pancreatic β-cells under the duress of metabolic stress. However, precise molecular and cellular mechanisms underlying the metabolic roles of hyperactive Rac1 remain less understood. Using pharmacological and molecular biological approaches, we now report mistargetting of biologically-active Rac1 [GTP-bound conformation] to the nuclear compartment in clonal INS-1 cells, normal rat islets and human islets under HG conditions. Our findings also suggest that such a signaling step is independent of post-translational prenylation of Rac1. Evidence is also presented to highlight novel roles for sustained activation of Rac1 in HG-induced expression of Cluster of Differentiation 36 [CD36], a fatty acid transporter protein, which is implicated in cell apoptosis. Finally, our findings suggest that metformin, a biguanide anti-diabetic drug, at a clinically relevant concentration, prevents β-cell defects [Rac1 activation, nuclear association, CD36 expression, stress kinase and caspase-3 activation, and loss in metabolic viability] under the duress of glucotoxicity. Potential implications of these findings in the context of novel and direct regulation of islet β-cell function by metformin are discussed.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 14%
Student > Doctoral Student 2 14%
Student > Master 2 14%
Lecturer 1 7%
Librarian 1 7%
Other 4 29%
Unknown 2 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 36%
Agricultural and Biological Sciences 2 14%
Veterinary Science and Veterinary Medicine 1 7%
Unspecified 1 7%
Physics and Astronomy 1 7%
Other 2 14%
Unknown 2 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 August 2017.
All research outputs
#20,444,703
of 22,999,744 outputs
Outputs from Apoptosis
#634
of 809 outputs
Outputs of similar age
#277,335
of 317,628 outputs
Outputs of similar age from Apoptosis
#7
of 13 outputs
Altmetric has tracked 22,999,744 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 809 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,628 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.