↓ Skip to main content

Prediction of new brain metastases after radiosurgery: validation and analysis of performance of a multi-institutional nomogram

Overview of attention for article published in Journal of Neuro-Oncology, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
35 Mendeley
Title
Prediction of new brain metastases after radiosurgery: validation and analysis of performance of a multi-institutional nomogram
Published in
Journal of Neuro-Oncology, August 2017
DOI 10.1007/s11060-017-2588-4
Pubmed ID
Authors

Diandra N. Ayala-Peacock, Albert Attia, Steve E. Braunstein, Manmeet S. Ahluwalia, Jaroslaw Hepel, Caroline Chung, Joseph Contessa, Emory McTyre, Ann M. Peiffer, John T. Lucas, Scott Isom, Nicholas M. Pajewski, Rupesh Kotecha, Mark J. Stavas, Brandi R. Page, Lawrence Kleinberg, Colette Shen, Robert B. Taylor, Nasarachi E. Onyeuku, Andrew T. Hyde, Daniel Gorovets, Samuel T. Chao, Christopher Corso, Jimmy Ruiz, Kounosuke Watabe, Stephen B. Tatter, Gelareh Zadeh, Veronica L. S. Chiang, John B. Fiveash, Michael D. Chan

Abstract

Stereotactic radiosurgery (SRS) without whole brain radiotherapy (WBRT) for brain metastases can avoid WBRT toxicities, but with risk of subsequent distant brain failure (DBF). Sole use of number of metastases to triage patients may be an unrefined method. Data on 1354 patients treated with SRS monotherapy from 2000 to 2013 for new brain metastases was collected across eight academic centers. The cohort was divided into training and validation datasets and a prognostic model was developed for time to DBF. We then evaluated the discrimination and calibration of the model within the validation dataset, and confirmed its performance with an independent contemporary cohort. Number of metastases (≥8, HR 3.53 p = 0.0001), minimum margin dose (HR 1.07 p = 0.0033), and melanoma histology (HR 1.45, p = 0.0187) were associated with DBF. A prognostic index derived from the training dataset exhibited ability to discriminate patients' DBF risk within the validation dataset (c-index = 0.631) and Heller's explained relative risk (HERR) = 0.173 (SE = 0.048). Absolute number of metastases was evaluated for its ability to predict DBF in the derivation and validation datasets, and was inferior to the nomogram. A nomogram high-risk threshold yielding a 2.1-fold increased need for early WBRT was identified. Nomogram values also correlated to number of brain metastases at time of failure (r = 0.38, p < 0.0001). We present a multi-institutionally validated prognostic model and nomogram to predict risk of DBF and guide risk-stratification of patients who are appropriate candidates for radiosurgery versus upfront WBRT.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Other 3 9%
Student > Ph. D. Student 3 9%
Researcher 3 9%
Student > Postgraduate 3 9%
Student > Bachelor 2 6%
Other 7 20%
Unknown 14 40%
Readers by discipline Count As %
Medicine and Dentistry 7 20%
Neuroscience 5 14%
Biochemistry, Genetics and Molecular Biology 2 6%
Social Sciences 2 6%
Computer Science 1 3%
Other 2 6%
Unknown 16 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 August 2017.
All research outputs
#15,687,628
of 23,312,088 outputs
Outputs from Journal of Neuro-Oncology
#1,995
of 3,016 outputs
Outputs of similar age
#200,114
of 318,373 outputs
Outputs of similar age from Journal of Neuro-Oncology
#24
of 51 outputs
Altmetric has tracked 23,312,088 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,016 research outputs from this source. They receive a mean Attention Score of 4.2. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,373 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.