↓ Skip to main content

How likely are oscillations in a genetic feedback loop with delay?

Overview of attention for article published in The European Physical Journal E, August 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
1 Mendeley
Title
How likely are oscillations in a genetic feedback loop with delay?
Published in
The European Physical Journal E, August 2017
DOI 10.1140/epje/i2017-11563-y
Pubmed ID
Authors

Filippo Cola, Filippo Marchetti, Guido Tiana

Abstract

Some genetic control networks display temporal oscillations as a result of delays in their homeostatic control. A relevant question about these systems is whether the oscillating regime is a rare feature, or it corresponds to a sizeable volume of the space of parameters. The answer is not trivial mainly due to the large number of parameters controlling the rate equations which describe the network. We have developed an efficient sampling scheme of the parameter space, based on a Monte Carlo algorithm, and applied it to a two-node system with delay, characterised by a 8-dimension parameter space. The result is that the volume fraction of the parameter space associated with oscillations is small but not negligible, and it is weakly dependent on the duration of the delay. The most critical parameter to control oscillations is the coupling production rates, which must have opposite sign, giving rise to a negative feedback loop. The oscillating regions are connected except along the equilibrium constants between the two species, not allowing neutral evolution along this parameter.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 1 Mendeley reader of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 1 100%

Demographic breakdown

Readers by professional status Count As %
Professor 1 100%
Readers by discipline Count As %
Physics and Astronomy 1 100%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 August 2017.
All research outputs
#15,821,622
of 23,498,099 outputs
Outputs from The European Physical Journal E
#395
of 650 outputs
Outputs of similar age
#200,601
of 318,319 outputs
Outputs of similar age from The European Physical Journal E
#8
of 10 outputs
Altmetric has tracked 23,498,099 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 650 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,319 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.