↓ Skip to main content

Investigating successive Australian barley breeding populations for stable resistance to leaf rust

Overview of attention for article published in Theoretical and Applied Genetics, August 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

twitter
38 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
12 Mendeley
Title
Investigating successive Australian barley breeding populations for stable resistance to leaf rust
Published in
Theoretical and Applied Genetics, August 2017
DOI 10.1007/s00122-017-2970-9
Pubmed ID
Authors

L. A. Ziems, J. D. Franckowiak, G. J. Platz, E. S. Mace, R. F. Park, D. Singh, D. R. Jordan, L. T. Hickey

Abstract

Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene Rph20 to provide stable leaf rust resistance across environments. Stable resistance to barley leaf rust (BLR, caused by Puccinia hordei) was evaluated across environments in barley breeding populations (BPs). To identify genomic regions that can be combined with Rph20 to improve adult plant resistance (APR), two BPs genotyped with the Diversity Arrays Technology genotyping-by-sequencing platform (DArT-seq) were examined for reaction to BLR at both seedling and adult growth stages in Australian environments. An integrated consensus map comprising both first- and second-generation DArT platforms was used to integrate QTL information across two additional BPs, providing a total of four interrelated BPs and 15 phenotypic data sets. This enabled identification of key loci underpinning BLR resistance. The APR gene Rph20 was the only active resistance region consistently detected across BPs. Of the QTL identified, RphQ27 on chromosome 6HL was considered the best candidate for pairing with Rph20. RphQ27 did not align or share proximity with known genes and was detected in three of the four BPs. The combination of RphQ27 and Rph20 was of low frequency in the breeding material; however, strong resistance responses were observed for the lines carrying this pairing. This suggests that the candidate minor gene RphQ27 can interact additively with Rph20 to provide stable resistance to BLR across diverse environments.

X Demographics

X Demographics

The data shown below were collected from the profiles of 38 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 25%
Professor 2 17%
Other 1 8%
Student > Master 1 8%
Unknown 5 42%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 50%
Biochemistry, Genetics and Molecular Biology 1 8%
Medicine and Dentistry 1 8%
Unknown 4 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 23. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 December 2019.
All research outputs
#1,482,605
of 23,794,258 outputs
Outputs from Theoretical and Applied Genetics
#69
of 3,565 outputs
Outputs of similar age
#30,726
of 318,529 outputs
Outputs of similar age from Theoretical and Applied Genetics
#4
of 48 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,565 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,529 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.