↓ Skip to main content

Mercury bioaccumulation in cartilaginous fishes from Southern New England coastal waters: Contamination from a trophic ecology and human health perspective

Overview of attention for article published in Marine Environmental Research, May 2014
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
5 X users
facebook
2 Facebook pages

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
111 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mercury bioaccumulation in cartilaginous fishes from Southern New England coastal waters: Contamination from a trophic ecology and human health perspective
Published in
Marine Environmental Research, May 2014
DOI 10.1016/j.marenvres.2014.05.009
Pubmed ID
Authors

David L. Taylor, Nicholas J. Kutil, Anna J. Malek, Jeremy S. Collie

Abstract

This study examined total mercury (Hg) concentrations in cartilaginous fishes from Southern New England coastal waters, including smooth dogfish (Mustelus canis), spiny dogfish (Squalus acanthias), little skate (Leucoraja erinacea), and winter skate (Leucoraja ocellata). Total Hg in dogfish and skates were positively related to their respective body size and age, indicating Hg bioaccumulation in muscle tissue. There were also significant inter-species differences in Hg levels (mean ± 1 SD, mg Hg/kg dry weight, ppm): smooth dogfish (3.3 ± 2.1 ppm; n = 54) > spiny dogfish (1.1 ± 0.7 ppm; n = 124) > little skate (0.4 ± 0.3 ppm; n = 173) ∼ winter skate (0.3 ± 0.2 ppm; n = 148). The increased Hg content of smooth dogfish was attributed to its upper trophic level status, determined by stable nitrogen (δ(15)N) isotope analysis (mean δ(15)N = 13.2 ± 0.7‰), and the consumption of high Hg prey, most notably cancer crabs (0.10 ppm). Spiny dogfish had depleted δ(15)N signatures (11.6 ± 0.8‰), yet demonstrated a moderate level of contamination by foraging on pelagic prey with a range of Hg concentrations, e.g., in order of dietary importance, butterfish (Hg = 0.06 ppm), longfin squid (0.17 ppm), and scup (0.11 ppm). Skates were low trophic level consumers (δ(15)N = 11.9-12.0‰) and fed mainly on amphipods, small decapods, and polychaetes with low Hg concentrations (0.05-0.09 ppm). Intra-specific Hg concentrations were directly related to δ(15)N and carbon (δ(13)C) isotope signatures, suggesting that Hg biomagnifies across successive trophic levels and foraging in the benthic trophic pathway increases Hg exposure. From a human health perspective, 87% of smooth dogfish, 32% of spiny dogfish, and <2% of skates had Hg concentrations exceeding the US Environmental Protection Agency threshold level (0.3 ppm wet weight). These results indicate that frequent consumption of smooth dogfish and spiny dogfish may adversely affect human health, whereas skates present minimal risk.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 111 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
France 1 <1%
Portugal 1 <1%
Mexico 1 <1%
Brazil 1 <1%
Unknown 105 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 20%
Researcher 18 16%
Student > Master 16 14%
Student > Bachelor 8 7%
Student > Doctoral Student 6 5%
Other 16 14%
Unknown 25 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 32 29%
Environmental Science 23 21%
Chemistry 4 4%
Veterinary Science and Veterinary Medicine 3 3%
Psychology 3 3%
Other 15 14%
Unknown 31 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 25. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 December 2014.
All research outputs
#1,509,554
of 25,374,917 outputs
Outputs from Marine Environmental Research
#86
of 1,910 outputs
Outputs of similar age
#14,597
of 240,309 outputs
Outputs of similar age from Marine Environmental Research
#1
of 16 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,910 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.5. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 240,309 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.