↓ Skip to main content

Remote sensing measurements of sea surface temperature as an indicator of Vibrio parahaemolyticus in oyster meat and human illnesses

Overview of attention for article published in Environmental Health, August 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
66 Mendeley
Title
Remote sensing measurements of sea surface temperature as an indicator of Vibrio parahaemolyticus in oyster meat and human illnesses
Published in
Environmental Health, August 2017
DOI 10.1186/s12940-017-0301-x
Pubmed ID
Authors

Stephanie Konrad, Peggy Paduraru, Pablo Romero-Barrios, Sarah B. Henderson, Eleni Galanis

Abstract

Vibrio parahaemolyticus (Vp) is a naturally occurring bacterium found in marine environments worldwide. It can cause gastrointestinal illness in humans, primarily through raw oyster consumption. Water temperatures, and potentially other environmental factors, play an important role in the growth and proliferation of Vp in the environment. Quantifying the relationships between environmental variables and indicators or incidence of Vp illness is valuable for public health surveillance to inform and enable suitable preventative measures. This study aimed to assess the relationship between environmental parameters and Vp in British Columbia (BC), Canada. The study used Vp counts in oyster meat from 2002-2015 and laboratory confirmed Vp illnesses from 2011-2015 for the province of BC. The data were matched to environmental parameters from publicly available sources, including remote sensing measurements of nighttime sea surface temperature (SST) obtained from satellite readings at a spatial resolution of 1 km. Using three separate models, this paper assessed the relationship between (1) daily SST and Vp counts in oyster meat, (2) weekly mean Vp counts in oysters and weekly Vp illnesses, and (3) weekly mean SST and weekly Vp illnesses. The effects of salinity and chlorophyll a were also evaluated. Linear regression was used to quantify the relationship between SST and Vp, and piecewise regression was used to identify SST thresholds of concern. A total of 2327 oyster samples and 293 laboratory confirmed illnesses were included. In model 1, both SST and salinity were significant predictors of log(Vp) counts in oyster meat. In model 2, the mean log(Vp) count in oyster meat was a significant predictor of Vp illnesses. In model 3, weekly mean SST was a significant predictor of weekly Vp illnesses. The piecewise regression models identified a SST threshold of approximately 14(o)C for both model 1 and 3, indicating increased risk of Vp in oyster meat and Vp illnesses at higher temperatures. Monitoring of SST, particularly through readily accessible remote sensing data, could serve as a warning signal for Vp and help inform the introduction and cessation of preventative or control measures.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 66 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 21%
Researcher 8 12%
Student > Bachelor 5 8%
Student > Doctoral Student 4 6%
Student > Postgraduate 3 5%
Other 9 14%
Unknown 23 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 11%
Environmental Science 5 8%
Earth and Planetary Sciences 4 6%
Medicine and Dentistry 4 6%
Social Sciences 4 6%
Other 17 26%
Unknown 25 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 September 2017.
All research outputs
#20,444,703
of 22,999,744 outputs
Outputs from Environmental Health
#1,354
of 1,503 outputs
Outputs of similar age
#276,210
of 316,373 outputs
Outputs of similar age from Environmental Health
#29
of 33 outputs
Altmetric has tracked 22,999,744 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,503 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 31.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,373 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.