↓ Skip to main content

Molecular Dynamics Study of Nanoconfined Water Flow Driven by Rotating Electric Fields under Realistic Experimental Conditions

Overview of attention for article published in Langmuir, March 2014
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
2 news outlets
blogs
1 blog
twitter
1 X user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular Dynamics Study of Nanoconfined Water Flow Driven by Rotating Electric Fields under Realistic Experimental Conditions
Published in
Langmuir, March 2014
DOI 10.1021/la404805s
Pubmed ID
Authors

Sergio De Luca, B. D. Todd, J. S. Hansen, Peter J. Daivis

Abstract

In our recent work, J. Chem. Phys. 2013, 138, 154712, we demonstrated the feasibility of unidirectional pumping of water, exploiting translational-rotational momentum coupling using nonequilibrium molecular dynamics simulations. Flow can be sustained when the fluid is driven out of equilibrium by an external spatially uniform rotating electric field and confined between two planar surfaces exposing different degrees of hydrophobicity. The permanent dipole moment of water follows the rotating field, thus inducing the molecules to spin, and the torque exerted by the field is continuously injected into the fluid, enabling a steady conversion of spin angular momentum into linear momentum. The translational-rotational coupling is a sensitive function of the rotating electric field parameters. In this work, we have found that there exists a small energy dissipation region attainable when the frequency of the rotating electric field matches the inverse of the dielectric relaxation time of water and when its amplitude lies in a range just before dielectric saturation effects take place. In this region, that is, when the frequency lies in a small window of the microwave region around ∼20 GHz and amplitude ∼0.03 V Å(-1), the translational-rotational coupling is most effective, yielding fluid velocities of magnitudes of ∼2 ms(-1) with only moderate fluid heating. In this work, we also confine water to a realistic nanochannel made of graphene giving a hydrophobic surface on one side and β-cristobalite giving a hydrophilic surface on the other, reproducing slip-and-stick velocity boundary conditions, respectively. This enables us to demonstrate that in a realistic environment, the coupling can be effectively exploited to achieve noncontact pumping of water at the nanoscale. A quantitative comparison between nonequilibrium molecular dynamics and analytical solutions of the extended Navier-Stokes equations, including an external rotating electric field has been performed, showing excellent agreement when the electric field parameters match the aforementioned small energy dissipation region.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 28%
Researcher 4 11%
Professor 4 11%
Student > Master 3 8%
Professor > Associate Professor 2 6%
Other 6 17%
Unknown 7 19%
Readers by discipline Count As %
Chemistry 9 25%
Physics and Astronomy 4 11%
Engineering 4 11%
Materials Science 3 8%
Computer Science 2 6%
Other 5 14%
Unknown 9 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 22. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 July 2014.
All research outputs
#1,453,963
of 22,757,541 outputs
Outputs from Langmuir
#126
of 13,937 outputs
Outputs of similar age
#15,708
of 221,246 outputs
Outputs of similar age from Langmuir
#5
of 132 outputs
Altmetric has tracked 22,757,541 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,937 research outputs from this source. They receive a mean Attention Score of 3.8. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 221,246 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 132 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.