↓ Skip to main content

Simultaneous estimation of diet composition and calibration coefficients with fatty acid signature data

Overview of attention for article published in Ecology and Evolution, June 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Simultaneous estimation of diet composition and calibration coefficients with fatty acid signature data
Published in
Ecology and Evolution, June 2017
DOI 10.1002/ece3.3179
Pubmed ID
Authors

Jeffrey F. Bromaghin, Suzanne M. Budge, Gregory W. Thiemann, Karyn D. Rode

Abstract

Knowledge of animal diets provides essential insights into their life history and ecology, although diet estimation is challenging and remains an active area of research. Quantitative fatty acid signature analysis (QFASA) has become a popular method of estimating diet composition, especially for marine species. A primary assumption of QFASA is that constants called calibration coefficients, which account for the differential metabolism of individual fatty acids, are known. In practice, however, calibration coefficients are not known, but rather have been estimated in feeding trials with captive animals of a limited number of model species. The impossibility of verifying the accuracy of feeding trial derived calibration coefficients to estimate the diets of wild animals is a foundational problem with QFASA that has generated considerable criticism. We present a new model that allows simultaneous estimation of diet composition and calibration coefficients based only on fatty acid signature samples from wild predators and potential prey. Our model performed almost flawlessly in four tests with constructed examples, estimating both diet proportions and calibration coefficients with essentially no error. We also applied the model to data from Chukchi Sea polar bears, obtaining diet estimates that were more diverse than estimates conditioned on feeding trial calibration coefficients. Our model avoids bias in diet estimates caused by conditioning on inaccurate calibration coefficients, invalidates the primary criticism of QFASA, eliminates the need to conduct feeding trials solely for diet estimation, and consequently expands the utility of fatty acid data to investigate aspects of ecology linked to animal diets.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 71 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 24%
Student > Master 14 20%
Researcher 14 20%
Student > Doctoral Student 3 4%
Student > Bachelor 3 4%
Other 7 10%
Unknown 13 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 31 44%
Environmental Science 14 20%
Biochemistry, Genetics and Molecular Biology 2 3%
Earth and Planetary Sciences 2 3%
Mathematics 1 1%
Other 3 4%
Unknown 18 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 September 2017.
All research outputs
#20,660,571
of 25,382,440 outputs
Outputs from Ecology and Evolution
#7,182
of 8,478 outputs
Outputs of similar age
#253,579
of 328,389 outputs
Outputs of similar age from Ecology and Evolution
#196
of 219 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,478 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.0. This one is in the 8th percentile – i.e., 8% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,389 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 219 others from the same source and published within six weeks on either side of this one. This one is in the 4th percentile – i.e., 4% of its contemporaries scored the same or lower than it.