↓ Skip to main content

Itm2a silencing rescues lamin A mediated inhibition of 3T3-L1 adipocyte differentiation

Overview of attention for article published in Adipocyte, September 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Itm2a silencing rescues lamin A mediated inhibition of 3T3-L1 adipocyte differentiation
Published in
Adipocyte, September 2017
DOI 10.1080/21623945.2017.1362510
Pubmed ID
Authors

Stephanie J. Davies, James Ryan, Patrick B. F. O'Connor, Elaine Kenny, Derek Morris, Pavel V. Baranov, Rosemary O'Connor, Tommie V. McCarthy

Abstract

Dysregulation of adipose tissue metabolism is associated with multiple metabolic disorders. One such disease, known as Dunnigan-type familial partial lipodystrophy (FPLD2) is characterized by defective fat metabolism and storage. FPLD2 is caused by a specific subset of mutations in the LMNA gene. The mechanisms by which LMNA mutations lead to the adipose specific FPLD2 phenotype have yet to be determined in detail. We used RNA-Seq analysis to assess the effects of wild-type (WT) and mutant (R482W) lamin A on the expression profile of differentiating 3T3-L1 mouse preadipocytes and identified Itm2a as a gene that was upregulated at 36 h post differentiation induction in these cells. In this study we identify Itm2a as a novel modulator of adipogenesis and show that endogenous Itm2a expression is transiently downregulated during induction of 3T3-L1 differentiation. Itm2a overexpression was seen to moderately inhibit differentiation of 3T3-L1 preadipocytes while shRNA mediated knockdown of Itm2a significantly enhanced 3T3-L1 differentiation. Investigation of PPARγ levels indicate that this enhanced adipogenesis is mediated through the stabilization of the PPARγ protein at specific time points during differentiation. Finally, we demonstrate that Itm2a knockdown is sufficient to rescue the inhibitory effects of lamin A WT and R482W mutant overexpression on 3T3-L1 differentiation. This suggests that targeting of Itm2a or its related pathways, including autophagy, may have potential as a therapy for FPLD2.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 20%
Researcher 2 20%
Professor 1 10%
Student > Master 1 10%
Other 1 10%
Other 0 0%
Unknown 3 30%
Readers by discipline Count As %
Medicine and Dentistry 3 30%
Agricultural and Biological Sciences 1 10%
Biochemistry, Genetics and Molecular Biology 1 10%
Unknown 5 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 September 2017.
All research outputs
#20,446,373
of 23,001,641 outputs
Outputs from Adipocyte
#209
of 295 outputs
Outputs of similar age
#275,650
of 315,613 outputs
Outputs of similar age from Adipocyte
#3
of 3 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 295 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,613 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one.