↓ Skip to main content

Characterization of biomarkers in stroke based on ego-networks and pathways

Overview of attention for article published in Biotechnology Techniques, September 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
6 Mendeley
Title
Characterization of biomarkers in stroke based on ego-networks and pathways
Published in
Biotechnology Techniques, September 2017
DOI 10.1007/s10529-017-2430-2
Pubmed ID
Authors

Haixia Li, Qianqian Guo

Abstract

To explore potential biomarkers in stroke based on ego-networks and pathways. EgoNet method was applied to search for the underlying biomarkers in stroke using transcription profiling of E-GEOD-58294 and protein-protein interaction (PPI) data. Eight ego-genes were identified from PPI network according to the degree characteristics at the criteria of top 5% ranked z-sore and degree >1. Eight candidate ego-networks with classification accuracy ≥0.9 were selected. After performed randomization test, seven significant ego-networks with adjusted p value < 0.05 were identified. Pathway enrichment analysis was then conducted with these ego-networks to search for the significant pathways. Finally, two significant pathways were identified, and six of seven ego-networks were enriched to "3'-UTR-mediated translational regulation" pathway, indicating that this pathway performs an important role in the development of stroke. Seven ego-networks were constructed using EgoNet and two significant enriched by pathways were identified. These may provide new insights into the potential biomarkers for the development of stroke.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 50%
Lecturer > Senior Lecturer 1 17%
Unknown 2 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 17%
Medicine and Dentistry 1 17%
Engineering 1 17%
Unknown 3 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 September 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Biotechnology Techniques
#2,493
of 2,762 outputs
Outputs of similar age
#283,994
of 323,304 outputs
Outputs of similar age from Biotechnology Techniques
#17
of 20 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,762 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,304 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.