↓ Skip to main content

Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis

Overview of attention for article published in Planta, September 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
78 Dimensions

Readers on

mendeley
47 Mendeley
Title
Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis
Published in
Planta, September 2017
DOI 10.1007/s00425-017-2771-z
Pubmed ID
Authors

Peiqiang Wang, Lingjie Zhang, Xiaolan Jiang, Xinlong Dai, Lijuan Xu, Tong Li, Dawei Xing, Yanzhi Li, Mingzhuo Li, Liping Gao, Tao Xia

Abstract

LARs promoted the biosynthesis of catechin monomers and inhibited their polymerization. The accumulation of catechin monomers and polymers was increased by up-regulating the expression of NtLAR and NtANR s in CsMYB5b transgenic tobacco. Tea is rich in polyphenolic compounds, and catechins are the major polyphenols in tea. The biosynthesis of polyphenols is closely related to the expression of the leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) genes. In this paper, an evolutionary analysis and functional characterization of three CsLARs were performed. The phylogenetic tree showed that plant LARs could be grouped into three, including gymnosperms, monocotyledons and dicotyledons (clusters I and II). The eighth amino acid residue in a conserved LAR-specific motif is changeable due to a transversion (G → T) and transition (G → C) that occur in the corresponding codon. Therefore, plant LARs can be classified as G-type, A-type and S-type LARs due to this variable amino acid residue. Although (2R, 3S)-trans-flavan-3-ols were the products of recombinant CsLARs proteins expressed in Escherichia coli, both (2R, 3S)-trans and (2R, 3R)-cis-flavan-3-ols were detected in tobacco overexpressing CsLARs. However, a butanol/HCl hydrolysis assay indicated that overexpression of the CsLARs caused a decrease in polymerized catechins. A hybridization experiment with CsLARc + AtPAP1 also showed that no polymers other than epicatechin, catechin and glycoside were detected, although the accumulation of anthocyanins was markedly decreased. CsMYB5b promoted the biosynthesis of both flavan-3-ols and proanthocyanidins (PAs). Therefore, LARs promoted the biosynthesis of catechin monomers and inhibited their polymerization. The accumulation of catechin monomers and polymers was increased by up-regulating the expression of the NtLAR and NtANRs in CsMYB5b transgenic tobacco.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 32%
Researcher 7 15%
Student > Master 4 9%
Student > Bachelor 3 6%
Lecturer 2 4%
Other 5 11%
Unknown 11 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 47%
Biochemistry, Genetics and Molecular Biology 4 9%
Engineering 2 4%
Social Sciences 1 2%
Environmental Science 1 2%
Other 0 0%
Unknown 17 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 September 2017.
All research outputs
#20,446,373
of 23,001,641 outputs
Outputs from Planta
#2,393
of 2,738 outputs
Outputs of similar age
#276,054
of 316,058 outputs
Outputs of similar age from Planta
#30
of 34 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,738 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,058 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.