↓ Skip to main content

Multitrophic interactions mediate the effects of climate change on herbivore abundance

Overview of attention for article published in Oecologia, September 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

blogs
1 blog
twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
72 Mendeley
Title
Multitrophic interactions mediate the effects of climate change on herbivore abundance
Published in
Oecologia, September 2017
DOI 10.1007/s00442-017-3934-0
Pubmed ID
Authors

Ayla Robinson, David W. Inouye, Jane E. Ogilvie, Emily H. Mooney

Abstract

Climate change can influence the abundance of insect herbivores through direct and indirect mechanisms. In this study, we evaluated multitrophic drivers of herbivore abundance for an aphid species (Aphis helianthi) in a subalpine food web consisting of a host plant (Ligusticum porteri), mutualist ants and predatory lygus bugs (Lygus spp.). We used a model-selection approach to determine which climate and host plant cues best predict year-to-year variation in insect phenology and abundance observed over 6 years. We complemented this observational study with experiments that determined how elevated temperature interacts with (1) host plant phenology and (2) the ant-aphid mutualism to determine aphid abundance. We found date of snowmelt to be the best predictor of yearly abundance of aphid and lygus bug abundance but the direction of this effect differed. Aphids achieved lower abundances in early snowmelt years likely due to increased abundance of lygus bug predators in these years. Elevating temperature of L. porteri flowering stalks reduced their quality as hosts for aphid populations. However, warming aphid colonies on host plants of similar quality increased population growth rates. Importantly, this effect was apparent even in the absence of ants. While we observed fewer ants tending colonies at elevated temperatures, these colonies also had reduced numbers of lygus bug predators. This suggests that mutualism with ants becomes less significant as temperature increases, which contrasts other ant-hemipteran systems. Our observational and experimental results show the importance of multitrophic species interactions for predicting the effect of climate change on the abundances of herbivores.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 72 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 22%
Researcher 12 17%
Student > Master 11 15%
Student > Bachelor 8 11%
Professor 3 4%
Other 10 14%
Unknown 12 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 41 57%
Environmental Science 9 13%
Earth and Planetary Sciences 3 4%
Biochemistry, Genetics and Molecular Biology 3 4%
Unspecified 2 3%
Other 2 3%
Unknown 12 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 November 2017.
All research outputs
#2,270,026
of 23,001,641 outputs
Outputs from Oecologia
#366
of 4,236 outputs
Outputs of similar age
#45,751
of 316,063 outputs
Outputs of similar age from Oecologia
#12
of 65 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,236 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,063 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.